
Recap: Conditionals

▶ Code that is executed only when conditions are met
If-Statement

1 if (EXPRESSION)
2 STATEMENT
3 else
4 STATEMENT;

Switch-Statement
1 switch (EXPRESSION) {
2 case CONSTANT:
3 STATEMENT;
4 break;
5 case CONSTANT2:
6 case CONSTANT3:
7 STATEMENT;
8 break;
9 default:

10 STATEMENT
11 }
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Introduction

▶ Executing code repeatedly
▶ What do we need?

▶ The code to be executed (i.e., a code block)
▶ Conditions on how often to repeat
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While-Loop

▶ Repeat as long as some expression is true
▶ Similar to if , but with a repeat option

▶ EXPRESSION must be of type boolean

▶ If EXPRESSION evaluates to false , not executed at all

▶ EXPRESSION is evaluated in every iteration before the code block is run
▶ I.e., if variables change during execution, the expression result may also change

1 while (EXPRESSION) {
2 // some code
3 }
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Do-While-Loop

▶ Repeat as long as some expression is true
▶ Similar to while , but code is executed at least once

1 do {
2 // some code
3 } while (EXPRESSION);
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For-Loop

▶ In many cases, we know in advance how often do repeat code

1 // do something for each of 25 days
2 int days = 25;
3 int c = 0;
4 while (c < days) {
5 // do stuff
6 c++; // short form of c = c + 1
7 }

1 // do something for each of 25 days
2 int days = 25;
3 for (int c = 0; c < days; c++) {
4 // do stuff
5 }

▶ For-loops offer a denser notation
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For-Loop

1 for (INIT; CONDITION; UPDATE) {
2 //
3 }

▶ INIT: Executed before entering the loop for the first time
▶ CONDITION: An expression, checked before every iteration

▶ Must be of type boolean

▶ UPDATE: Executed at the end of each iteration
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For-Loop
Scope

▶ Variables declared within a for loop are not known outside of it
▶ If variables are declared in INIT, they belong to the scope of for-statement
▶ This shows a difference to the corresponding while-statement

Example
1 int a = 4;
2 for (int b = 0; b < 10; b++) {
3 // b is known
4 // a is known
5 }
6 // a is known
7 // b is not known
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Break and Continue

▶ All loops can also be controlled by two keywords: break and continue

▶ break

▶ Terminates the entire loop abruptly
▶ Execution continues after the closing }

▶ continue

▶ Terminates the current iteration of the loop
▶ Execution continues with the next iteration

▶ for : Run UPDATE first
▶ All loops check their conditions before

▶ break / continue are sometimes useful, but
▶ are able to exit a loop independently of the exit condition and thus
▶ make code harder to read and understand
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Understanding Loops
▶ Sometimes challenging to understand a loop
▶ Crucial: Keep track of variable contents
▶ Variables may change in every iteration
▶ Conditions/exit conditions can be complex

How many ! will be printed?
1 int a = 7;
2 while(a > 0) {
3 int f = a % 2;
4 if (f > 0) {
5 a = a - 2;
6 } else {
7 a = a + 1;
8 }
9 System.out.print("!");

10 }

Line a f
1
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