
Recap: Conditionals

▶ Code that is executed only when conditions are met
If-Statement

1 if (EXPRESSION)
2 STATEMENT
3 else
4 STATEMENT;

Switch-Statement
1 switch (EXPRESSION) {
2 case CONSTANT:
3 STATEMENT;
4 break;
5 case CONSTANT2:
6 case CONSTANT3:
7 STATEMENT;
8 break;
9 default:

10 STATEMENT
11 }

Reiter Session 5: Loops 1 / 14

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Exercise 4

Reiter Session 5: Loops 2 / 14



Session 5: Loops
Softwaretechnologie: Java 1

Nils Reiter
nils.reiter@uni-koeln.de

November 15, 2023



Introduction

▶ Executing code repeatedly
▶ What do we need?

▶ The code to be executed (i.e., a code block)
▶ Conditions on how often to repeat

Reiter Session 5: Loops 4 / 14

Nils Reiter

Nils Reiter



While-Loop

▶ Repeat as long as some expression is true
▶ Similar to if , but with a repeat option

▶ EXPRESSION must be of type boolean

▶ If EXPRESSION evaluates to false , not executed at all

▶ EXPRESSION is evaluated in every iteration before the code block is run
▶ I.e., if variables change during execution, the expression result may also change

1 while (EXPRESSION) {
2 // some code
3 }

Reiter Session 5: Loops 5 / 14

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



demo



Do-While-Loop

▶ Repeat as long as some expression is true
▶ Similar to while , but code is executed at least once

1 do {
2 // some code
3 } while (EXPRESSION);

Reiter Session 5: Loops 7 / 14

Nils Reiter

Nils Reiter



For-Loop

▶ In many cases, we know in advance how often do repeat code

1 // do something for each of 25 days
2 int days = 25;
3 int c = 0;
4 while (c < days) {
5 // do stuff
6 c++; // short form of c = c + 1
7 }

1 // do something for each of 25 days
2 int days = 25;
3 for (int c = 0; c < days; c++) {
4 // do stuff
5 }

▶ For-loops offer a denser notation

Reiter Session 5: Loops 8 / 14

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



For-Loop

▶ In many cases, we know in advance how often do repeat code

1 // do something for each of 25 days
2 int days = 25;
3 int c = 0;
4 while (c < days) {
5 // do stuff
6 c++; // short form of c = c + 1
7 }

1 // do something for each of 25 days
2 int days = 25;
3 for (int c = 0; c < days; c++) {
4 // do stuff
5 }

▶ For-loops offer a denser notation

Reiter Session 5: Loops 8 / 14

Nils Reiter

Nils Reiter

Nils Reiter



For-Loop

1 for (INIT; CONDITION; UPDATE) {
2 //
3 }

▶ INIT: Executed before entering the loop for the first time
▶ CONDITION: An expression, checked before every iteration

▶ Must be of type boolean

▶ UPDATE: Executed at the end of each iteration

Reiter Session 5: Loops 9 / 14

Nils Reiter



For-Loop
Scope

▶ Variables declared within a for loop are not known outside of it
▶ If variables are declared in INIT, they belong to the scope of for-statement
▶ This shows a difference to the corresponding while-statement

Example
1 int a = 4;
2 for (int b = 0; b < 10; b++) {
3 // b is known
4 // a is known
5 }
6 // a is known
7 // b is not known

Reiter Session 5: Loops 10 / 14

Nils Reiter



demo



Break and Continue

▶ All loops can also be controlled by two keywords: break and continue

▶ break

▶ Terminates the entire loop abruptly
▶ Execution continues after the closing }

▶ continue

▶ Terminates the current iteration of the loop
▶ Execution continues with the next iteration

▶ for : Run UPDATE first
▶ All loops check their conditions before

▶ break / continue are sometimes useful, but
▶ are able to exit a loop independently of the exit condition and thus
▶ make code harder to read and understand

Reiter Session 5: Loops 12 / 14

Nils Reiter



Break and Continue

▶ All loops can also be controlled by two keywords: break and continue

▶ break

▶ Terminates the entire loop abruptly
▶ Execution continues after the closing }

▶ continue

▶ Terminates the current iteration of the loop
▶ Execution continues with the next iteration

▶ for : Run UPDATE first
▶ All loops check their conditions before

▶ break / continue are sometimes useful, but
▶ are able to exit a loop independently of the exit condition and thus
▶ make code harder to read and understand

Reiter Session 5: Loops 12 / 14



Understanding Loops
▶ Sometimes challenging to understand a loop
▶ Crucial: Keep track of variable contents
▶ Variables may change in every iteration
▶ Conditions/exit conditions can be complex

How many ! will be printed?
1 int a = 7;
2 while(a > 0) {
3 int f = a % 2;
4 if (f > 0) {
5 a = a - 2;
6 } else {
7 a = a + 1;
8 }
9 System.out.print("!");

10 }

Line a f
1

Reiter Session 5: Loops 13 / 14



Understanding Loops
▶ Sometimes challenging to understand a loop
▶ Crucial: Keep track of variable contents
▶ Variables may change in every iteration
▶ Conditions/exit conditions can be complex

How many ! will be printed?
1 int a = 7;
2 while(a > 0) {
3 int f = a % 2;
4 if (f > 0) {
5 a = a - 2;
6 } else {
7 a = a + 1;
8 }
9 System.out.print("!");

10 }

Line a f
1

Reiter Session 5: Loops 13 / 14

Nils Reiter

Nils Reiter

Nils Reiter



Understanding Loops
▶ Sometimes challenging to understand a loop
▶ Crucial: Keep track of variable contents
▶ Variables may change in every iteration
▶ Conditions/exit conditions can be complex

How many ! will be printed?
1 int a = 7;
2 while(a > 0) {
3 int f = a % 2;
4 if (f > 0) {
5 a = a - 2;
6 } else {
7 a = a + 1;
8 }
9 System.out.print("!");

10 }

Line a f
1

Reiter Session 5: Loops 13 / 14

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Section 1

Exercise


	Exercise

