
Recap

▶ Abstract classes
▶ A class that cannot be instantiated
▶ Other classes can inherit from it

▶ Abstract methods
▶ A method without an implementation
▶ If a class has an abstract method the class must be abstract as well
▶ Inheritors of the class must implement the method

▶ Interfaces
▶ Something like a class, but all methods are abstract
▶ Used to define the behaviour of a class, without actually implementing it

Reiter Session 11: Input/Output and Error Handling 1 / 21



Superclass vs. Interface

▶ It depends on your application
▶ Main/secondary categories

▶ Some categories are more important than others
▶ Important categories as super classes, others as interfaces

▶ Amount of code
▶ Use as superclass what defines the more methods

▶ Can do / is a
▶ Interface signifies what an object can do
▶ Superclass signifies what an object is

▶ Change frequency
▶ If we expect it to change often, make an interface

Reiter Session 11: Input/Output and Error Handling 2 / 21



Session 11: Input/Output and Error Handling
Softwaretechnologie: Java 1

Nils Reiter
nils.reiter@uni-koeln.de

January 17, 2024



Section 1

Input and Output



Input and Output

Introduction

▶ So far: All data is defined within our programs
▶ Reality: Data is external to our program

▶ Read from files
▶ Downloaded via network
▶ Recorded from microphone

▶ Input/Output (IO)
▶ Input to the program
▶ Output from the program

Reiter Session 11: Input/Output and Error Handling 5 / 21



Input and Output

Introduction

▶ So far: All data is defined within our programs
▶ Reality: Data is external to our program

▶ Read from files
▶ Downloaded via network
▶ Recorded from microphone

▶ Input/Output (IO)
▶ Input to the program
▶ Output from the program

Reiter Session 11: Input/Output and Error Handling 5 / 21

Nils Reiter



Input and Output

Stream
▶ A channel through which bytes/characters are transmitted

▶ Generic computer concept (not Java-specific)

Source Input stream Program

Program Output stream Target

▶ Stream
▶ Can provide a single unit only once (i.e., if something has been read from a stream, it’s no

longer in the stream)
▶ Has an end (e.g., if the end of a file has been reached)
▶ Has an order (i.e., after we have read something from a stream, we have to read the next

unit)
▶ Need to be closed after use

Reiter Session 11: Input/Output and Error Handling 6 / 21

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Input and Output

Stream
▶ A channel through which bytes/characters are transmitted

▶ Generic computer concept (not Java-specific)

Source Input stream Program

Program Output stream Target

▶ Stream
▶ Can provide a single unit only once (i.e., if something has been read from a stream, it’s no

longer in the stream)
▶ Has an end (e.g., if the end of a file has been reached)
▶ Has an order (i.e., after we have read something from a stream, we have to read the next

unit)
▶ Need to be closed after use

Reiter Session 11: Input/Output and Error Handling 6 / 21

Nils Reiter

Nils Reiter



Input and Output

Streams in Java

▶ Abstract class java.io.InputStream

▶ int read() – Reads the next byte from the stream
▶ void close() – Closes this stream and releases system resources

▶ Abstract class java.io.OutputStream

▶ void write(int b) – Writes the specified byte to this output stream
▶ void flush() – Flushes this output stream and forces any buffered output bytes to be written

out
▶ void close() – Closes this stream and releases system resources

▶ Implementations
▶ java.io.FileInputStream / java.io.FileOutputStream – for reading/writing from files
▶ java.io.ObjectInputStream / java.io.ObjectOutputStream – to read/write objects from/into other streams
▶ … for many other use cases

Reiter Session 11: Input/Output and Error Handling 7 / 21

https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/FileInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/FileOutputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectOutputStream.html
Nils Reiter

Nils Reiter

Nils Reiter



Input and Output

Streams in Java

▶ Abstract class java.io.InputStream

▶ int read() – Reads the next byte from the stream
▶ void close() – Closes this stream and releases system resources

▶ Abstract class java.io.OutputStream

▶ void write(int b) – Writes the specified byte to this output stream
▶ void flush() – Flushes this output stream and forces any buffered output bytes to be written

out
▶ void close() – Closes this stream and releases system resources

▶ Implementations
▶ java.io.FileInputStream / java.io.FileOutputStream – for reading/writing from files
▶ java.io.ObjectInputStream / java.io.ObjectOutputStream – to read/write objects from/into other streams
▶ … for many other use cases

Reiter Session 11: Input/Output and Error Handling 7 / 21

https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/FileInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/FileOutputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectOutputStream.html
Nils Reiter

Nils Reiter

Nils Reiter



Input and Output

Streams in Java

▶ Abstract class java.io.InputStream

▶ int read() – Reads the next byte from the stream
▶ void close() – Closes this stream and releases system resources

▶ Abstract class java.io.OutputStream

▶ void write(int b) – Writes the specified byte to this output stream
▶ void flush() – Flushes this output stream and forces any buffered output bytes to be written

out
▶ void close() – Closes this stream and releases system resources

▶ Implementations
▶ java.io.FileInputStream / java.io.FileOutputStream – for reading/writing from files
▶ java.io.ObjectInputStream / java.io.ObjectOutputStream – to read/write objects from/into other streams
▶ … for many other use cases

Reiter Session 11: Input/Output and Error Handling 7 / 21

https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/OutputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/FileInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/FileOutputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectOutputStream.html
Nils Reiter

Nils Reiter



demo



Input and Output

What’s with int and byte?

▶ InputStream.read() returns an int
▶ “The value byte is returned as an int in the range 0 to 255. If no byte is available because

the end of the stream has been reached, the value -1 is returned.”

▶ Why not the data type byte?
▶ Because byte can distinguish 256 values, but we need 267 to signal the end of the stream

▶ Why not short?
▶ Because int is actually faster than short …

▶ The good news: int can be cast into a char, which is what we mostly really want

Reiter Session 11: Input/Output and Error Handling 9 / 21

Nils Reiter



Input and Output

What’s with int and byte?

▶ InputStream.read() returns an int
▶ “The value byte is returned as an int in the range 0 to 255. If no byte is available because

the end of the stream has been reached, the value -1 is returned.”
▶ Why not the data type byte?

▶ Because byte can distinguish 256 values, but we need 267 to signal the end of the stream

▶ Why not short?
▶ Because int is actually faster than short …

▶ The good news: int can be cast into a char, which is what we mostly really want

Reiter Session 11: Input/Output and Error Handling 9 / 21



Input and Output

What’s with int and byte?

▶ InputStream.read() returns an int
▶ “The value byte is returned as an int in the range 0 to 255. If no byte is available because

the end of the stream has been reached, the value -1 is returned.”
▶ Why not the data type byte?

▶ Because byte can distinguish 256 values, but we need 267 to signal the end of the stream
▶ Why not short?

▶ Because int is actually faster than short …

▶ The good news: int can be cast into a char, which is what we mostly really want

Reiter Session 11: Input/Output and Error Handling 9 / 21



Input and Output

What’s with int and byte?

▶ InputStream.read() returns an int
▶ “The value byte is returned as an int in the range 0 to 255. If no byte is available because

the end of the stream has been reached, the value -1 is returned.”
▶ Why not the data type byte?

▶ Because byte can distinguish 256 values, but we need 267 to signal the end of the stream
▶ Why not short?

▶ Because int is actually faster than short …
▶ The good news: int can be cast into a char, which is what we mostly really want

Reiter Session 11: Input/Output and Error Handling 9 / 21



Input and Output

Why are some characters broken?

▶ Some characters are represented as more than one byte
▶ E.g., “ö”: 1 1 0 0 0 0 1 1 1 0 1 1 0 1 1 0
▶ It’s an interpretation step to convert 1100001110110110 into an ö

▶ Readers are an abstraction layer on top of streams to handle this

Reiter Session 11: Input/Output and Error Handling 10 / 21

Nils Reiter

Nils Reiter



Input and Output

Readers

▶ java.io.InputStreamReader

▶ int read() – Reads a single character
▶ java.io.OutputStreamWriter

▶ void write(int ch) – Writes a single character

1 InputStream fis = new FileInputStream("path/to/file");
2 InputStreamReader isr = new InputStreamReader(fis, "UTF-8");
3 char ch = isr.read();
4 isr.close();
5
6 OutputStream os = new FileOutputStream("path/to/file");
7 OutputStreamWriter osw = new OutputStreamWriter(os, "UTF-8");
8 osw.write('a');
9 osw.flush();

10 osw.close();

Reiter Session 11: Input/Output and Error Handling 11 / 21

https://docs.oracle.com/javase/7/docs/api/java/io/InputStreamReader.html
https://docs.oracle.com/javase/7/docs/api/java/io/OutputStreamWriter.html
Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Input and Output

What can go wrong with files?

▶ When dealing with the program-external world, there are many new error sources
▶ When reading a file

▶ File is not there
▶ File is there, but we have no (read) access
▶ File is deleted while being read

▶ When writing to a file
▶ Directory isn’t there
▶ File is already there
▶ Directory is there and file isn’t, but we have no (write) access
▶ Disk becomes full during writing

Reiter Session 11: Input/Output and Error Handling 12 / 21



Input and Output

What can go wrong with files?

▶ When dealing with the program-external world, there are many new error sources
▶ When reading a file

▶ File is not there
▶ File is there, but we have no (read) access
▶ File is deleted while being read

▶ When writing to a file
▶ Directory isn’t there
▶ File is already there
▶ Directory is there and file isn’t, but we have no (write) access
▶ Disk becomes full during writing

Reiter Session 11: Input/Output and Error Handling 12 / 21



Input and Output

What can go wrong with files?

▶ When dealing with the program-external world, there are many new error sources
▶ When reading a file

▶ File is not there
▶ File is there, but we have no (read) access
▶ File is deleted while being read

▶ When writing to a file

▶ Directory isn’t there
▶ File is already there
▶ Directory is there and file isn’t, but we have no (write) access
▶ Disk becomes full during writing

Reiter Session 11: Input/Output and Error Handling 12 / 21



Input and Output

What can go wrong with files?

▶ When dealing with the program-external world, there are many new error sources
▶ When reading a file

▶ File is not there
▶ File is there, but we have no (read) access
▶ File is deleted while being read

▶ When writing to a file
▶ Directory isn’t there
▶ File is already there
▶ Directory is there and file isn’t, but we have no (write) access
▶ Disk becomes full during writing

Reiter Session 11: Input/Output and Error Handling 12 / 21

Nils Reiter



Section 2

Exception Handling



Exception Handling

Introduction

▶ Exceptions can appear in various places and for many reasons
▶ An exception signals something unexpected that happened – usually an error of some kind

▶ Exceptions are thrown and can be caught
▶ But this happens beside to the usual program flow
▶ Exceptions are instances of the class java.lang.Exception (or one of its many subclasses)

Reiter Session 11: Input/Output and Error Handling 14 / 21

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html


Exception Handling

Introduction

▶ Exceptions can appear in various places and for many reasons
▶ An exception signals something unexpected that happened – usually an error of some kind
▶ Exceptions are thrown and can be caught
▶ But this happens beside to the usual program flow

▶ Exceptions are instances of the class java.lang.Exception (or one of its many subclasses)

Reiter Session 11: Input/Output and Error Handling 14 / 21

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html


Exception Handling

Introduction

▶ Exceptions can appear in various places and for many reasons
▶ An exception signals something unexpected that happened – usually an error of some kind
▶ Exceptions are thrown and can be caught
▶ But this happens beside to the usual program flow
▶ Exceptions are instances of the class java.lang.Exception (or one of its many subclasses)

Reiter Session 11: Input/Output and Error Handling 14 / 21

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
Nils Reiter



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

JVM

Reiter Session 11: Input/Output and Error Handling 15 / 21

Nils Reiter

Nils Reiter



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call
return

return

JVM

Reiter Session 11: Input/Output and Error Handling 15 / 21

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call

Disk Full!

JVM

Reiter Session 11: Input/Output and Error Handling 15 / 21



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call

Exception

thrown

JVM

Reiter Session 11: Input/Output and Error Handling 15 / 21



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call

ExceptionDo you catch?

JVM

Reiter Session 11: Input/Output and Error Handling 15 / 21



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call

ExceptionDo you catch?

JVM

Reiter Session 11: Input/Output and Error Handling 15 / 21



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call

JVM ExceptionDo you catch?

Reiter Session 11: Input/Output and Error Handling 15 / 21



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call

JVM ExceptionDo you catch?

Yes,
by crashing!

Reiter Session 11: Input/Output and Error Handling 15 / 21



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call

ExceptionDo you catch?

Reiter Session 11: Input/Output and Error Handling 15 / 21



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call

ExceptionDo you catch?

Yes,
by executing some code block

Reiter Session 11: Input/Output and Error Handling 15 / 21



Exception Handling

Exception Handling Visualised

main()

aFunction()

anotherFunction()

call

call

exception

return

Reiter Session 11: Input/Output and Error Handling 15 / 21

Nils Reiter



Exception Handling

Implementation in Java

▶ Three components to implement in methods:
1. Signal that an exception can be thrown
2. Throw an exception
3. Catch an exception

Kinds of exceptions
▶ Regular exceptions are objects of the class java.lang.Exception

▶ Runtime exceptions are objects of the class java.lang.RuntimeException

▶ The potential for a runtime exceptions does not need to be signalled
I.e., we don’t need step 1 from a above

▶ A runtime exception can happen anytime, anywhere
▶ We can define our own exceptions by creating sub classes of java.lang.Exception

Reiter Session 11: Input/Output and Error Handling 16 / 21

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html


Exception Handling

Implementation in Java

▶ Three components to implement in methods:
1. Signal that an exception can be thrown
2. Throw an exception
3. Catch an exception

Kinds of exceptions
▶ Regular exceptions are objects of the class java.lang.Exception

▶ Runtime exceptions are objects of the class java.lang.RuntimeException

▶ The potential for a runtime exceptions does not need to be signalled
I.e., we don’t need step 1 from a above

▶ A runtime exception can happen anytime, anywhere

▶ We can define our own exceptions by creating sub classes of java.lang.Exception

Reiter Session 11: Input/Output and Error Handling 16 / 21

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html
Nils Reiter



Exception Handling

Implementation in Java

▶ Three components to implement in methods:
1. Signal that an exception can be thrown
2. Throw an exception
3. Catch an exception

Kinds of exceptions
▶ Regular exceptions are objects of the class java.lang.Exception

▶ Runtime exceptions are objects of the class java.lang.RuntimeException

▶ The potential for a runtime exceptions does not need to be signalled
I.e., we don’t need step 1 from a above

▶ A runtime exception can happen anytime, anywhere
▶ We can define our own exceptions by creating sub classes of java.lang.Exception

Reiter Session 11: Input/Output and Error Handling 16 / 21

https://docs.oracle.com/javase/7/docs/api/java/lang/Exception.html
https://docs.oracle.com/javase/7/docs/api/java/lang/RuntimeException.html


Exception Handling

Implementation in Java
Signal that an exception can be thrown

1 public void someMethod() throws Exception {
2 // some code
3 }

▶ New modifier for method declaration: throws

▶ Modifier followed by a class name
▶ Needs to match the type of exception

Reiter Session 11: Input/Output and Error Handling 17 / 21

Nils Reiter



Exception Handling

Implementation in Java
Throw an exception

1 public void someMethod() throws Exception {
2 // some code
3 if (SOME TEST) {
4 throw new Exception("some error occurred");
5 }
6 // some code
7 }

▶ New keyword throws

▶ Followed by an object of type java.lang.Exception
▶ Regular rules for creating an object of a class
▶ In 99% of the time, we create a new one with new

Reiter Session 11: Input/Output and Error Handling 18 / 21

Nils Reiter

Nils Reiter

Nils Reiter



Exception Handling

Implementation in Java
Catching an exception

1 // some code
2 try {
3 // some code
4 object.someMethod();
5 // some code
6 } catch (Exception e) {
7 // deal with the error
8 // if needed, access fields/methods of the exception with the variable e
9 }

10 // some code

▶ New statement kind: try { ... } catch (TYPE VARIABLE) { ... }

▶ If line 4 throws an exception, code in line 5 is not executed – but code in lines 7 and 8
▶ Program continues in line 10

Reiter Session 11: Input/Output and Error Handling 19 / 21

Nils Reiter



demo



Section 3

Exercise


	Input and Output
	Exception Handling
	Exercise

