
Recap: IO and Exceptions

▶ Input and output
▶ Streams: Pipes through which data flows

▶ When something has consumed, it’s no longer there
▶ Need to be flushed and closed at the end

▶ InputStream/OutputStream: byte-wise operations
▶ Readers/Writers: Used on top of streams to operate on characters

▶ Things can go wrong, even if our program works well
▶ Many error sources with I/O: Files, disks, networks can fail
▶ Exception handling

▶ Mechanism to handle unexpected errors
▶ try {} catch (EX) {}

▶ Exceptions are objects of class java.lang.Exception



User Input, Java Standard Library, Code Style, Closing Remarks
Softwaretechnologie: Java 1

Nils Reiter
nils.reiter@uni-koeln.de

January 24, 2024



Section 1

User Input



User Input

Introduction

▶ Last week: “Using System.out.println() uses a stream”
▶ Now: How does this work, exactly?

▶ Two directions
▶ Program output written to console
▶ Program input read from console

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 4 / 19



User Input

Introduction

▶ Last week: “Using System.out.println() uses a stream”
▶ Now: How does this work, exactly?
▶ Two directions

▶ Program output written to console
▶ Program input read from console

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 4 / 19



User Input

System.out.println

▶ System : A class with many static methods / fields java.lang.System

▶ I.e., we can just use them: System.exit() calls static method exit in class System

▶ Three stream-related fields:
▶ System.out – a PrintStream
▶ System.err – a PrintStream
▶ System.in – an InputStream

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 5 / 19

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html


User Input

System.out.println

▶ System : A class with many static methods / fields java.lang.System

▶ I.e., we can just use them: System.exit() calls static method exit in class System
▶ Three stream-related fields:

▶ System.out – a PrintStream
▶ System.err – a PrintStream
▶ System.in – an InputStream

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 5 / 19

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html


User Input

PrintStream

▶ java.io.PrintStream

▶ Inherits from java.io.FilterOutputStream , which inherits from java.io.OutputStream

▶ I.e., System.out is an output stream, and we can call all OutputStream methods (e.g.,
write(int byte) )

▶ Class documentation:
▶ Ability to print representations of various data values conveniently
▶ PrintStream never throws an IOException; instead
▶ PrintStream can be created so as to flush automatically

▶ System.out and System.err
▶ System.out used for regular output (e.g., the answer that the program produces)
▶ System.err intended for error messages (e.g., exception stuff)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 6 / 19

https://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html


User Input

PrintStream

▶ java.io.PrintStream

▶ Inherits from java.io.FilterOutputStream , which inherits from java.io.OutputStream

▶ I.e., System.out is an output stream, and we can call all OutputStream methods (e.g.,
write(int byte) )

▶ Class documentation:
▶ Ability to print representations of various data values conveniently
▶ PrintStream never throws an IOException; instead
▶ PrintStream can be created so as to flush automatically

▶ System.out and System.err
▶ System.out used for regular output (e.g., the answer that the program produces)
▶ System.err intended for error messages (e.g., exception stuff)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 6 / 19

https://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html


User Input

System.in

▶ Used to read input from console
▶ Not very convenient with the bare input stream
▶ Two options:

▶ InputStreamReader
▶ Reads character-wise
▶ Beware: n is a single character

▶ BufferedStreamReader (wrapped around an InputStreamReader)
▶ Can read line-wise (which is usually what we want)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 7 / 19



demo
Zoo/Exercise 12



Section 2

Java Standard Library



Java Standard Library

Introduction

▶ Programming language core: Rather small
▶ A few types, some statements, some syntactic elements

▶ Libraries
▶ Collections of code, useful for all kinds of things
▶ Many languages have such libraries
▶ To avoid reinventing the wheel, we should use them

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 10 / 19



Java Standard Library

Introduction

▶ Programming language core: Rather small
▶ A few types, some statements, some syntactic elements
▶ Libraries

▶ Collections of code, useful for all kinds of things
▶ Many languages have such libraries
▶ To avoid reinventing the wheel, we should use them

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 10 / 19



Java Standard Library

Java Standard Library

Interesting packages
▶ java.io – Input and output
▶ java.lang – Core functions
▶ java.math – Mathematical functions
▶ java.net – Handling networks and connections
▶ java.text – Simple text processing
▶ java.util – Various utility functions, in particular collections

▶ Will be discussed in depth in the summer term
▶ java.awt, javax.swing – Classes for graphical user interfaces

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 11 / 19



Section 3

Code Style



Code Style

Introduction

▶ Interaction between programmers is easier, if they adhere to common style
▶ Style: How to write and format variables, methods, classes etc.
▶ Java Code Style

▶ No strict rules, but guidelines
▶ Offical document from 1997:

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
▶ In Eclipse, you can select the code and use Source > Format to automatically format the

code nicely

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 13 / 19

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf


Code Style

Java Code Style

▶ CamelCase is used for combining words (instead of underscore or dot)
▶ Class and interface names start with an upper case letter (MyArray) and are nouns
▶ Methods names start with a lower case letter (get()) and are verb phrases
▶ Variables start with a lower-case letter and are as long as it needs to be for clarity

▶ Variable names like a are dispreferred
▶ Indentation should be used to make the structure of the program visible

▶ Substatements of a statement or declaration should be indented
▶ Indentation should be four spaces wide

▶ Avoid lines longer than 80 characters
▶ Files longer than 2000 lines are cumbersome and should be avoided.
▶ …

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 14 / 19



Section 4

Closing Remarks



Closing Remarks

Learning Programming

▶ Learning to program is hard and takes time
▶ It helps to

▶ Regularly do it
▶ Talk about it
▶ Be stubborn
▶ Think formalistic
▶ Be fearless and disrespectful
▶ Read documentation
▶ Try to understand your mistakes

▶ It’s ok to make mistakes

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 16 / 19



Closing Remarks

On Programming in Real Life

▶ It’s extremely rare to start from scratch
▶ Most of the time, we work with code that others have written

▶ 60% to 90% of the lifetime cost of software goes to maintenance Sources

▶ Software we start will likely be continued by others

 Writing “good code” is not needed technically, but because it makes maintenance easier

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?

Kernighan/Plauger (1978, 10)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 17 / 19

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm


Closing Remarks

On Programming in Real Life

▶ It’s extremely rare to start from scratch
▶ Most of the time, we work with code that others have written

▶ 60% to 90% of the lifetime cost of software goes to maintenance Sources

▶ Software we start will likely be continued by others
 Writing “good code” is not needed technically, but because it makes maintenance easier

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?

Kernighan/Plauger (1978, 10)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 17 / 19

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm


Closing Remarks

On Programming in Real Life

▶ It’s extremely rare to start from scratch
▶ Most of the time, we work with code that others have written

▶ 60% to 90% of the lifetime cost of software goes to maintenance Sources

▶ Software we start will likely be continued by others
 Writing “good code” is not needed technically, but because it makes maintenance easier

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?

Kernighan/Plauger (1978, 10)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 17 / 19

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm


Closing Remarks

On Programming with Code Models (“AI”-Tools)

▶ There are multiple ways to get code written by tools: ChatGPT, GitHub Co-Pilot, …
▶ This is a cool technical achievement

▶ But you still should learn programming without them, because
▶ if you’re dependent on them, you’re at their mercy (and they are free to tune the price spiral!)
▶ LLM-generated code is not necessarily good code

▶ “35.8% of Copilot generated code snippets contain [known security issues]” Fu et al. (2023)
▶ “Results suggest that ChatGPT is aware of potential vulnerabilities, but nonetheless often

generates source code that are not robust to certain attacks.” Khoury et al. (2023)
▶ Efficiency problems have been reported as well

▶ generating stuff (incl. code) consumes a lot of power
▶ Generating 1000 text snippets consumes 0.047 kWh on average, with corresponding CO2

emissions Luccioni et al. (2023)
▶ Using LLMs is the opposite of power-efficient programming

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18 / 19



Closing Remarks

On Programming with Code Models (“AI”-Tools)

▶ There are multiple ways to get code written by tools: ChatGPT, GitHub Co-Pilot, …
▶ This is a cool technical achievement
▶ But you still should learn programming without them, because

▶ if you’re dependent on them, you’re at their mercy (and they are free to tune the price spiral!)

▶ LLM-generated code is not necessarily good code
▶ “35.8% of Copilot generated code snippets contain [known security issues]” Fu et al. (2023)
▶ “Results suggest that ChatGPT is aware of potential vulnerabilities, but nonetheless often

generates source code that are not robust to certain attacks.” Khoury et al. (2023)
▶ Efficiency problems have been reported as well

▶ generating stuff (incl. code) consumes a lot of power
▶ Generating 1000 text snippets consumes 0.047 kWh on average, with corresponding CO2

emissions Luccioni et al. (2023)
▶ Using LLMs is the opposite of power-efficient programming

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18 / 19



Closing Remarks

On Programming with Code Models (“AI”-Tools)

▶ There are multiple ways to get code written by tools: ChatGPT, GitHub Co-Pilot, …
▶ This is a cool technical achievement
▶ But you still should learn programming without them, because

▶ if you’re dependent on them, you’re at their mercy (and they are free to tune the price spiral!)
▶ LLM-generated code is not necessarily good code

▶ “35.8% of Copilot generated code snippets contain [known security issues]” Fu et al. (2023)
▶ “Results suggest that ChatGPT is aware of potential vulnerabilities, but nonetheless often

generates source code that are not robust to certain attacks.” Khoury et al. (2023)
▶ Efficiency problems have been reported as well

▶ generating stuff (incl. code) consumes a lot of power
▶ Generating 1000 text snippets consumes 0.047 kWh on average, with corresponding CO2

emissions Luccioni et al. (2023)
▶ Using LLMs is the opposite of power-efficient programming

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18 / 19



Closing Remarks

On Programming with Code Models (“AI”-Tools)

▶ There are multiple ways to get code written by tools: ChatGPT, GitHub Co-Pilot, …
▶ This is a cool technical achievement
▶ But you still should learn programming without them, because

▶ if you’re dependent on them, you’re at their mercy (and they are free to tune the price spiral!)
▶ LLM-generated code is not necessarily good code

▶ “35.8% of Copilot generated code snippets contain [known security issues]” Fu et al. (2023)
▶ “Results suggest that ChatGPT is aware of potential vulnerabilities, but nonetheless often

generates source code that are not robust to certain attacks.” Khoury et al. (2023)
▶ Efficiency problems have been reported as well

▶ generating stuff (incl. code) consumes a lot of power
▶ Generating 1000 text snippets consumes 0.047 kWh on average, with corresponding CO2

emissions Luccioni et al. (2023)
▶ Using LLMs is the opposite of power-efficient programming

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18 / 19



Closing Remarks

Looking Ahead
What happens in the summer term
▶ Version control (= git)
▶ Recursion
▶ Data structures
▶ Unit testing
▶ Efficient programming
▶ Multithreading
▶ …

Programming Ideas for the Break
▶ A simple game such as Tic Tac Toe

▶ Turn-based games are simpler than real time games
▶ Birthday predictor (read in a list of birthdays, calculate the next round anniversaries)
▶ Make algorithmic art (e.g., ASCII art)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 19 / 19



Closing Remarks

Looking Ahead
What happens in the summer term
▶ Version control (= git)
▶ Recursion
▶ Data structures
▶ Unit testing
▶ Efficient programming
▶ Multithreading
▶ …

Programming Ideas for the Break
▶ A simple game such as Tic Tac Toe

▶ Turn-based games are simpler than real time games
▶ Birthday predictor (read in a list of birthdays, calculate the next round anniversaries)
▶ Make algorithmic art (e.g., ASCII art)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 19 / 19


	User Input
	Java Standard Library
	Code Style
	Closing Remarks

