

Computerlinguistische Experimente und Ziele HS Anwendungen der Computerlinguistik

Nils Reiter nils.reiter@uni-koeln.de

16. November 2023

- ▶ Preoțiuc-Pietro u. a. (2019): "Automatically Identifying Complaints in Social Media"
- Panchendrarajan u. a. (2016): "Implicit Aspect Detection in Restaurant Reviews using Cooccurence of Words"
- ► Which one did you like better?
- ▶ Which one was easier to understand?

- ▶ Preoțiuc-Pietro u. a. (2019): "Automatically Identifying Complaints in Social Media"
- Panchendrarajan u. a. (2016): "Implicit Aspect Detection in Restaurant Reviews using Cooccurence of Words"
- Which one did you like better?
- Which one was easier to understand?
- Very typical NLP papers
 - ▶ 8-9 pages, densely written
 - Structure: Abstract Introduction Related work Data description/analysis Experimental part – Conclusions – References

- ▶ Preoțiuc-Pietro u. a. (2019): "Automatically Identifying Complaints in Social Media"
- Panchendrarajan u. a. (2016): "Implicit Aspect Detection in Restaurant Reviews using Cooccurence of Words"
- ► Which one did you like better?
- Which one was easier to understand?
- Very typical NLP papers
 - ▶ 8-9 pages, densely written
 - Structure: Abstract Introduction Related work Data description/analysis Experimental part – Conclusions – References
- My opinion: Preoțiuc-Pietro u. a. (2019) ,better' than Panchendrarajan u. a. (2016)

Abbreviation	Reference
Manning/Schütze, 1999	Christopher D. Manning/Hinrich Schütze (1999). Foun- dations of Statistical Natural Language Processing. Cam- bridge, Massachusetts und London, England: MIT Press
Jurafsky/Martin, 2023	Dan Jurafsky/James H. Martin (2023). Speech and Lan- guage Processing. 3. Aufl. Draft of Janaury 7, 2023. Prentice Hall. URL: https://web.stanford.edu/ ~jurafsky/slp3/

Tabelle: References to text books

Comprehension Questions

- ▶ 10-fold cross validation
- ► ROC AUC
- Maximum entropy classification
- Cohen's Kappa

- Target concept: Complaints
- Binary classification of tweets
- A tweet is positive, if it contains at least one complaint speech act
- No context dependency

Preoțiuc-Pietro u. a. (2019)

- Target concept: Complaints
- Binary classification of tweets
- A tweet is positive, if it contains at least one complaint speech act
- No context dependency

Panchendrarajan u. a. (2016)

Preoțiuc-Pietro u. a. (2019)

- Target concept: Complaints
- Binary classification of tweets
- A tweet is positive, if it contains at least one complaint speech act
- No context dependency

Panchendrarajan u. a. (2016)

- Target concept: Mentioned and reviewed aspects
- Multi-label classification of sentences
 - Not explicitly stated by the authors
- No context dependency

Preotiuc-Pietro u. a. (2019)

- Target concept: Complaints
- Binary classification of tweets
- A tweet is positive, if it contains at least one complaint speech act
- ► No context dependency

Panchendrarajan u. a. (2016)

- Target concept: Mentioned and reviewed aspects
- Multi-label classification of sentences.
 - Not explicitly stated by the authors

Manning/Schütze, 1999, 192,575

► No context dependency

Reminder: Classification

- Organize items into previously defined classes
- Multi-class: More than two classes (i.e., more than binary)
- Multi-label: Each item can get more than one label Reiter

Computerlinguistische Experimente und Ziele

- ► 3449 English tweets, no retweets
 - 1971 to which support accounts replied
 - ▶ 739 **@**-replies
 - ► 739 other tweets

Preoțiuc-Pietro u. a. (2019)

- ► 3449 English tweets, no retweets
 - 1971 to which support accounts replied
 - ▶ 739 **@**-replies
 - ▶ 739 other tweets

Preprocessing

- Replace all usernames
- ► Replace all URLs
- Extract unigrams

Preoțiuc-Pietro u. a. (2019)

- ► 3449 English tweets, no retweets
 - ► 1971 to which support accounts replied
 - ▶ 739 **@**-replies
 - ▶ 739 other tweets

Preprocessing

- Replace all usernames
- Replace all URLs
- Extract unigrams
- Annotation
 - Two independent annotators
 - Agreement κ = 0.731 (Cohen, 1960)

Reiter

Preoțiuc-Pietro u. a. (2019)

- ► 3449 English tweets, no retweets
 - ► 1971 to which support accounts replied
 - ▶ 739 **@**-replies
 - ▶ 739 other tweets

Preprocessing

- Replace all usernames
- Replace all URLs
- Extract unigrams
- Annotation
 - Two independent annotators
 - Agreement $\kappa = 0.731$ (Cohen, 1960)

Panchendrarajan u. a. (2016)

▶ 1000 restaurant reviews from Yelp

Preoțiuc-Pietro u. a. (2019)

- ► 3449 English tweets, no retweets
 - 1971 to which support accounts replied
 - ▶ 739 **@**-replies
 - ▶ 739 other tweets

Preprocessing

- Replace all usernames
- Replace all URLs
- Extract unigrams
- Annotation
 - Two independent annotators
 - Agreement $\kappa = 0.731$ (Cohen, 1960)

Panchendrarajan u. a. (2016)

- $\blacktriangleright~1000$ restaurant reviews from Yelp
- Annotation (p. 135)
 - Two independent annotators on 3 samples of 100 reviews
 - Sentence-wise annotation
 - Agreement κ = 0.834 (Cohen, 1960)

Preoțiuc-Pietro u. a. (2019)

- ► 3449 English tweets, no retweets
 - 1971 to which support accounts replied
 - ▶ 739 **@**-replies
 - ▶ 739 other tweets

Preprocessing

- Replace all usernames
- Replace all URLs
- Extract unigrams

Annotation

- Two independent annotators
- Agreement $\kappa = 0.731$ (Cohen, 1960)

Panchendrarajan u. a. (2016)

- ► 1000 restaurant reviews from Yelp
- Annotation (p. 135)
 - Two independent annotators on 3 samples of 100 reviews
 - Sentence-wise annotation
 - Agreement κ = 0.834 (Cohen, 1960)
- Highly skewed distribution (Most sentences do not contain implicit aspects)

- ► 10-fold cross validation JM19, 69
- Parameters: 3-fold CV in inner loop

- ► 10-fold cross validation JM19, 69
- Parameters: 3-fold CV in inner loop
- Evaluation
 - Mean accuracy
 - ► F1 (macro-average)
 - ROČ AUC Manning/Schütze, 1999, 270
 - (ROC = receiver operating characteristic curve / AUC = area under curve)

Experimental Setup

Preoțiuc-Pietro u. a. (2019)

- ► 10-fold cross validation JM19, 69
- Parameters: 3-fold CV in inner loop
- Evaluation
 - Mean accuracy
 - ► F1 (macro-average)
 - ROC AUC Manning/Schütze, 1999, 270
 - (ROC = receiver operating characteristic curve / AUC = area under curve)

Panchendrarajan u. a. (2016)

- 10-fold cross validation JM19, 69
- Additional 400 reviews used for testing M1

Preoțiuc-Pietro u. a. (2019)

- ► 10-fold cross validation JM19, 69
- Parameters: 3-fold CV in inner loop
- Evaluation
 - Mean accuracy
 - ► F1 (macro-average)
 - ROČ AUC Manning/Schütze, 1999, 270
 - (ROC = receiver operating characteristic curve / AUC = area under curve)

Panchendrarajan u. a. (2016)

- 10-fold cross validation JM19, 69
- Additional 400 reviews used for testing M1
- Evaluation
 - Precision/recall/F1

Manning/Schütze, 1999, 267 ff.

Processing steps before actual task solving

- Part of speech
- Sentiment
- Request detection
- Politeness
- ► Time expressions

Processing steps before actual task solving

- Part of speech
- Sentiment
- Request detection
- Politeness
- ► Time expressions
- ► Word2vec

Processing steps before actual task solving

- Part of speech
- Sentiment
- Request detection
- Politeness
- ► Time expressions
- ► Word2vec
- Rule-based ad-hoc systems
 - Intensifiers
 - Pronoun types
 - LIWC

Processing steps before actual task solving

Preoțiuc-Pietro u. a. (2019)

- Part of speech
- Sentiment
- Request detection
- Politeness
- ► Time expressions
- ► Word2vec
- Rule-based ad-hoc systems
 - Intensifiers
 - Pronoun types
 - LIWC

Reiter

Computerlinguistische Experimente und Ziele

Panchendrarajan u. a. (2016)

Dependency relations
Which one?

Processing steps before actual task solving

Preoțiuc-Pietro u. a. (2019)

- Part of speech
- Sentiment
- Request detection
- Politeness
- ► Time expressions
- ► Word2vec
- Rule-based ad-hoc systems
 - Intensifiers
 - Pronoun types
 - LIWC

Panchendrarajan u. a. (2016)

Dependency relationsWhich one?

Pre-Processing

- No global definition of what counts as pre-processing
- Context-dependent

Preoțiuc-Pietro u. a. (2019)

Baseline: Most frequent class

- Baseline: Most frequent class
- Logistic regression with manually specified features JM19, 75 ff.

- Baseline: Most frequent class
- Logistic regression with manually specified features JM19, 75 ff.
- Neural networks with one-hot-encoded word vectors as input
 - MLP: Feedforward neural network JM19, 129 ff.
 - LSTM: Sequential classifier (word by word) JM19, 184 ff.

Preoțiuc-Pietro u. a. (2019)

- Baseline: Most frequent class
- Logistic regression with manually specified features JM19, 75 ff.
- Neural networks with one-hot-encoded word vectors as input
 - MLP: Feedforward neural network JM19, 129 ff.
 - LSTM: Sequential classifier (word by word) JM19, 184 ff.

Panchendrarajan u. a. (2016)

M1 (for explicit aspects): Maximum entropy classifier with n-grams as features (2 ≤ n ≤ 5)
= Logistic regression JM19, 75 ff.

Preoțiuc-Pietro u. a. (2019)

- Baseline: Most frequent class
- Logistic regression with manually specified features JM19, 75 ff.
- Neural networks with one-hot-encoded word vectors as input
 - ► MLP: Feedforward neural network JM19, 129 ff.
 - LSTM: Sequential classifier (word by word) JM19, 184 ff.

Panchendrarajan u. a. (2016)

- ► M1 (for explicit aspects): Maximum entropy classifier with n-grams as features (2 ≤ n ≤ 5)
 - = Logistic regression JM19, 75 ff.
- ► M2 (for implicit aspects)
 - Training: Collect dictionary (called ,model' by the authors)
 - Testing
 - 1. Generate candidates, based on score A_i (Eq. 1)
 - 2. Remove candidates according to rules (Fig. 1)
 - Modification 1 and 2 (p. 133)

Section 1

- Preoțiuc-Pietro u. a. (2019, Section 4)
- Concepts
 - ▶ Bag of words: Frequency of all words, irrespective of their ordering
 - ► TF*IDF: Way of weighting the words (instead of absolute counts) Manning/Schütze, 1999, 541 ff.
 - Word2Vec: Method to represent word meaning in high-dimensional vector space JM19, 110 ff.
 - Clustering: Each tweet is associated with a cluster, based on the word vectors
 - This generates 200 features!

Experiments

Three experiments

- ► Experiment 1
 - Variation in the feature sets and/or methods
 - Original data set used for train/test
- ► Experiment 2
 - Additional data generated through distant supervision
 - Idea: Use weakly correlated properties to induce annotations
 - Seven hashtags based on training data
 - ► 36 436 additional tweets (positive/negative)
 - Roughly ten times as many
 - Two ways to combine the data sets
- Experiment 3: Cross-domain

Experiment 1

Model	Acc	F1	AUC
Most frequent class	64.2	39.1	0.5
Sentiment – Stanford	68	55.6	0.696
Complaint Specific (all)	65.7	55.2	0.634
Downgraders	65.4	49.8	0.615
POS Bigrams	72.2	66.8	0.756
LIWC	71.6	65.8	0.784
Word2Vec Clusters	67.7	58.3	0.738
Bag-of-Words	79.8	77.5	0.866
All	80.5	78	0.873
MLP	78.3	76.2	0.845
LSTM	80.2	77	0.864

Tabelle: Experimental Results (excerpt)

Experiment 2

Model	Acc	F1	AUC
Most Frequent Class	64.2	39.1	0.5
LR-All Features – Original Data	80.5	78	0.873
Dist. Supervision + Pooling	77.2	75.7	0.853
Dist. Supervision $+ EasyAdapt$	81.2	79	0.885

Tabelle: Results of Experiment 2

Conclusions

- Concept rooted in linguistic work
- Created data set
- Analysis of data set
- Predictive model with reasonable performance

Section 2

Panchendrarajan u. a. (2016)

Two experiments

- Experiment 1: Comparison of prediction performance of different settings
- Experiment 2: Isolated evaluation on sentences with two/more than two aspects

M1	M2	Precision	Recall	F1
Oracle	As described Schouten et al. Modification 1 Modification 2	$\begin{array}{c} 0.947 \\ 0.495 \\ 0.916 \\ 0.931 \end{array}$	$\begin{array}{c} 0.758 \\ 0.929 \\ 0.752 \\ 0.754 \end{array}$	$\begin{array}{c} 0.842 \\ 0.645 \\ 0.826 \\ 0.834 \end{array}$
M1	As described	0.886	0.694	0.779

Tabelle: Experimental Results. Oracle: Assume that a vital preprocessing step works perfectly.

It can be seen in Table 1 that our approach gives the best result. Moreover it is worth noting that the precision drops drastically from 0.947 to 0.529 in Modification 2 as it does not execute Step 2. (Panchendrarajan u. a., 2016, 135)

M1	M2	Precision	Recall	F1
Oracle	As described Schouten et al. Modification 1 Modification 2	$\begin{array}{c} 0.947 \\ 0.495 \\ 0.916 \\ 0.931 \end{array}$	$\begin{array}{c} 0.758 \\ 0.929 \\ 0.752 \\ 0.754 \end{array}$	$\begin{array}{c} 0.842 \\ 0.645 \\ 0.826 \\ 0.834 \end{array}$
M1	As described	0.886	0.694	0.779

Tabelle: Experimental Results. Oracle: Assume that a vital preprocessing step works perfectly.

It can be seen in Table 1 that our approach gives the best result. Moreover it is worth noting that the precision drops drastically from 0.947 to 0.529 in Modification 2 as it does not execute Step 2. (Panchendrarajan u. a., 2016, 135)

M1	M2	Precision	Recall	F1
Oracle	As described Schouten et al. Modification 1 Modification 2	$\begin{array}{c} 0.947 \\ 0.495 \\ 0.916 \\ 0.931 \end{array}$	$\begin{array}{c} 0.758 \\ 0.929 \\ 0.752 \\ 0.754 \end{array}$	$\begin{array}{c} 0.842 \\ 0.645 \\ 0.826 \\ 0.834 \end{array}$
M1	As described	0.886	0.694	0.779

Tabelle: Experimental Results. Oracle: Assume that a vital preprocessing step works perfectly.

It can be seen in Table 1 that our approach gives the best result. Moreover it is worth noting that the precision drops drastically from 0.947 to 0.529 in Modification 2 as it does not execute Step 2. (Panchendrarajan u. a., 2016, 135)

Automatically achieved results only in last row

M1	M2	Precision	Recall	F1
Oracle	As described Schouten et al. Modification 1 Modification 2	$\begin{array}{c} 0.947 \\ 0.495 \\ 0.916 \\ 0.931 \end{array}$	$\begin{array}{c} 0.758 \\ 0.929 \\ 0.752 \\ 0.754 \end{array}$	$\begin{array}{c} 0.842 \\ 0.645 \\ 0.826 \\ 0.834 \end{array}$
M1	As described	0.886	0.694	0.779

Tabelle: Experimental Results. Oracle: Assume that a vital preprocessing step works perfectly.

It can be seen in Table 1 that our approach gives the best result. Moreover it is worth noting that the precision drops drastically from 0.947 to 0.529 in Modification 2 as it does not execute Step 2. (Panchendrarajan u. a., 2016, 135)

Mismatch between text and table

- ► Typical NLP papers: Focus in methods
- Complaints
 - Very clear
 - Classical machine learning wins
- Reviews
 - Implicit aspects in restaurant reviews
 - Machine learning and rules on top