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Problem gambling

.

Continuation of gambling behaviour despite negative consequences
Psychiatric disorder, classified as addictive disorder in DSM-5'

+ Prevalence estimated between 0.5% and 3% in Europe®

« Symptoms include

- Persistent and recurrent problematic gambling behaviour leading
to clinically significant impairment or distress

1 APA, 2014, Hogrefe
2 EGBA, 2012
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Problem gambling

- Continuation of gambling behaviour despite negative consequences

+ Psychiatric disorder, classified as addictive disorder in DSM-5'

+ Prevalence estimated between 0.5% and 3% in Europe®

« Symptoms include

Persistent and recurrent problematic gambling behaviour leading
to clinically significant impairment or distress

Need to gamble with increasing amounts of money in order to
achieve the desired excitement

Unsuccessful efforts to control, cut back, or stop gambling
Returning after losing money gambling ("chasing" losses)

Relying on others to provide money to relieve a desperate
financial situation caused by gambling

1 APA, 2014, Hogrefe

2 EGBA, 2012



Gambling-related cognitive distortions

« Gambling-related cognitive distortions are cognitive
biases/maladaptive ways of thinking about gambling '

 Persons with problem gambling tend to have more gambling-related
cognitive distortions tions than gamblers without problem gambling
behaviour and non-gamblers?

 Distortions manifest as

- Relating winnings to skill and ability, and losses to bad
circumstances

7 Raylu & Oei, 2004, Addiction
2 joukhador et al., 2003, Psychological Reports
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Gambling-related cognitive distortions

« Gambling-related cognitive distortions are cognitive
biases/maladaptive ways of thinking about gambling '

 Persons with problem gambling tend to have more gambling-related
cognitive distortions tions than gamblers without problem gambling
behaviour and non-gamblers?

« Distortions manifest as

- Relating winnings to skill and ability, and losses to bad
circumstances
Assuming that specific numbers and colours increase the chances
of winning
- Specific rituals and behaviours increase the chances of winning
+ Sense of having control over predicting wins

7 Raylu & Oei, 2004, Addiction
2 joukhador et al., 2003, Psychological Reports



Online communities on gambling
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1 was wondering If anyone can help me justify what | have done the last 3 months.

Recommended asinos

i gambled most of 2019 had no money the whole year and was majorly depressed, then
2020 | pulled my self together gambled once and lost a grand and that was i

P“fs[y w‘s then | turn 30 this January and think to my self right you have sorted your self out grow
up now and keep saving for that deposit for a home, managed to save 10k and then
after turning 30 ve done the 10k every weekend done 1k here 2k there untilt was all
gone.




Web scraping

« Method for structured extraction of website data

- Legal for scientific purposes if no access restrictions are
circumvented’

+ Packages available for many programming languages (e.g.
requests library for Python, and rvest package for R)

1 Klawonn, 2019, Available at SSRN 3491192



Database

+ Scraped data from a large Germany-speaking online forum on
gambling (April 2021)

* 205,385 posts from 4,428 registered user profiles

Subforum N posts
Rules and guidelines 9349
Blackjack 308
Poker 296
Roulette 614
Other games of chance 4701

Slot machines and slot games 6079
Gambling arcades and casinos 3365

Casino complaints 14328
Gambling addiction 4150
Online casinos 140818

Miscellaneous 21377




Changes in posting behaviour in gambling forum during the
lockdown in Germany
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Smith et al,, 2023, Journal of Gambling Studies



Can we detect early signs of
problem gambling from online
texts using machine learning
methods?




Workflow

Annotation

of 504 posts . Fine-tuning L Posts classified
as G (348) BERT model Gressrikim as G/PG
or PG (138)

Upsampling (SMOTE)

« Annotation based on DSM-5 criteria for gambling disorder and the
Gambling Related Cognitions Scale (GRCS)'
+ Fine-tuning of German BERTgase model?

1 APA, 2014, Hogrefe; Raylu & Oei, 2004, Addiction
2 Devlin et al,, 2019, Proc Conf Assoc Comput Linguist; https://huggingface . co/dbmdz/bert - base- german- uncased
G: gambling, PG: problem gambling
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Annotation

» Gambling post
» ... want to warn you vehemently about this casino!!”

+ Problem gambling post (problem gambling behaviour)

»-..1 Rept playing and there was hardly anything left of my €1,400
net income per month. | gambled away hundreds of euros again
and again.”

+ Problem gambling post (cognition distortion)
»--.Casino software is absolutely controllable.”
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What are large language models (LMMs)?




Pre-training and fine-tuning BERT

Pre-Training Fine-Tuning
Smaller labelled datasets
Large unlabelled datasets (SOuAI?. lfNI:I/cMNI.I,
(e.g. Wikipedia, BookCorpus) ‘Similarity)
Self-supervised Task-specific fine tuning
training (hours to days) (minutes to hours)

https://docs . graphcore.ai/projects/bert-training/en/latest/bert .html



https://docs.graphcore.ai/projects/bert-training/en/latest/bert.html

Bidirectional Encoder Representations from Transformers
(BERT)
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Input representation for BERT
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Workflow
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of 504 posts
as G (348)
or PG (138)

Preprocessing

Upsampling (SMOTE)
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Evaluating classification performance

relevant elements

false negatives true negatives
oo o ° o
How many retrieved How many relevant
items are relevant? items are retrieved?
Precision = ——— Recall= ——

retrieved elements

https://en.wikipedia.org/wiki/Precision_and_recall
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Classification performance
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Smith et al,, 2023, arXiv preprint
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Error analysis
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Smith et al,, 2023, arXiv preprint
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What are the perspectives for
applying LMMs to such data?
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Perspectives

« Increasing exchange on health-related topics in social media
generates large amounts of data

- Data with high ecological validity
-> Compliance with data protection and privacy

« Signs of problem gambling can be recognised automatically using
machine learning methods

- Use online data for research on behavioural addictions

- Validate ML classification through diagnostics

computational methods
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Thank you!
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Appendix Il

Transformer architecture
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Vaswani et al., 2017, NIPS



Appendix Il

Fine-tuning parameters

MODEL bert-base-german-uncased
(BERTgase has 12 encoder layers, 768 hidden units,
12-self-attention heads, 110 m parameters and is
pre-trained on a German Wikipedia and OpenLegalData
dump and news articles
FINE-TUNING Regression head (linear layer) on top of the output by
implementing BertForSequenceClassification
SEQ. LENGTH 512 tokens (maximum)
BATCH SIZE 16
OPTIMISER Adam optimiser with weight decay (¢ = 1e — 08)
EPOCHS 2
LEARNING RATE 5e — 5

Smith et al., 2023, arXiv preprint



Appendix IV

Classification performance
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