
Sprachverarbeitung: Übung
SoSe 24

Janis Pagel
Department for Digital Humanities, University of Cologne

2024-04-23

Please submit your solution via Ilias, either as a Jupyter Notebook (.ipynb, you can
export your Notebook in Jupyter by going to File > Download) or as a Python script
(.py) if you are not working in Jupyter.

You can write the written answers to the exercises into the source code as a comment
or into a separate document (PDF). In the second case, please submit both your PDF
file and your Python source code.

Exercise 6 is a bonus exercise that you can solve if you want to, but don’t have to.

Exercise 1.
Download the following corpus files from the Deutsches Text Archiv (DTA) into a direc-
tory called dta and extract them (if you are working on compute.spinfo.uni-koeln.

de) in Jupyter, it is probably easier to extract the files on your local machine and then
upload them to Jupyter via the upload button).

• https://media.dwds.de/dta/download/dtae/2020-10-23/original/1400-1499.

zip

• https://media.dwds.de/dta/download/dtae/2020-10-23/original/1500-1599.

zip

This should give you the sub-directories 1400-1499 and 1500-1599. Write a Python
script that reads in all .txt files from each directory and stores the content into a
dictionary that contains the century (“1400” and “1500”) as a key and all tokens from
the text files for this century as the value in a list. Hence, your dictionary should look
something like the following:

{1400: ["token1", "token2", "token3", ...],

1500: ["token1", "token2", "token3", ...]}

1

compute.spinfo.uni-koeln.de
compute.spinfo.uni-koeln.de
https://media.dwds.de/dta/download/dtae/2020-10-23/original/1400-1499.zip
https://media.dwds.de/dta/download/dtae/2020-10-23/original/1400-1499.zip
https://media.dwds.de/dta/download/dtae/2020-10-23/original/1500-1599.zip
https://media.dwds.de/dta/download/dtae/2020-10-23/original/1500-1599.zip

You can use “naive” token splitting, i.e. split tokens on whitespaces only, without sepa-
rating punctuation.

Create a pandas dataframe out of this dictionary. To achieve this, first convert your
dictionary into a pandas Series object and use the explode() and reset_index()

functions. Your dataframe should contain two columns, one with the century and one
with the respective tokens:

century token
1400 token1
1400 token2
1400 token3
...
1500 token1
1500 token2
1500 token3

Hint: In order to get a list of all the files in the directories, you can import the glob

Library and use the following code: list(glob.iglob("dta/**/*.txt", recursive=

True)). This will give you a list of the file names and paths for each txt-File. You can
then iterate over this list to read in all the files’ content.

Exercise 2.
On your dataframe from the previous exercise, calculate Type-Token Ratio (TTR) for
the 1400 and the 1500 corpus, respectively. To do this, look at the pandas methods
drop_duplicates() and size(). What do you observe? What do the numbers tell you
about the vocabulary distribution in the two corpora?

Exercise 3.
You have the hypothesis that the 1500s use much more words related to the topic of
“family” than compared to the 1400s. Using the dataframe from Exercise 1, retrieve
the absolute counts for German family-related tokens (try at least “kind”, “mutter”
and “vater”) and compare them between the 1400 and 1500 corpora. Do the numbers
corroborate or disprove your hypothesis?
Now calulate the relative counts for each century for the same tokens and compare.

How have the numbers changed? Do they still corroborate/disprove your hypothesis?
Do you think it is generally valid to investigate change in vocabulary usage this way?

Exercise 4.
Retrieve the absolute and relative counts for the token “gott” in both centuries. What
does it tell you about the usage of this token across the centuries? Now retrieve absolute
and relative counts for the token “Gott” in both centuries. What do these counts tell
you, also in regards to the results for the token “gott”?

2

Exercise 5.
Using the dataframe from Exercise 1, calculate the absolute counts for each token per
century and store in a new column. Based on these counts, retrieve the rank of each
token per century, such that the token with the highest absolute count has the highest
rank (rank 1), decreasing with frequency. To achieve this, look into the usage of the
pandas method called cumcount(). Use seaborn’s lineplot to plot the absolute count
on the y axis and the rank on the x axis and the century as a group to create two lines,
one for 1400 and one for 1500. What do you observe? Can you see a Zipf curve?
Now, only use the 50 highest ranked tokens from each century and plot again. What

is the difference? Can you observe a Zipf curve? If not, what is the problem? How could
you solve this problem?
Lastly, create a mini corpus with only two texts, dta/1400-1499/nn almanach05 1473.txt

and dta/1500-1599/rechnungsbuch01 1500.txt. Create the same plots with only
these two texts. What do you observe? How do you explain?

Bonus Exercise 6.
Using the dataframe from Exercise 1, calculate Standardized TTR (STTR) for a window
of 1000 words per century. Look into the usage of the pandas method “cut” to create
the windows. Compare your result to the result of Exercise 2. Are there differences?
What do the numbers tell you about the distribution of the vocabulary in the texts of
the two centuries?

3

