

Machine Learning: Introduction

Sprachverarbeitung (VL + Ü)

Nils Reiter

April 30, 2024

Introduction

- Collection of techniques for automatic
 - decision making
 - pattern detection
 - data analysis
- ► Machine learning vs. rule-based systems
 - ▶ Rule-based: Decision rules are hand-coded
 - ▶ if/then/else, ...
 - ► Machine learning: Decision >rules (are >learned (from data
 - ▶ Data is used to estimate weights and criteria

Rule-based part of speech tagging

```
# list of German determiners
  determiners = ["der", "die", "ein",...]
4 for token in tokens:
    if token[0].islower() and
       token.endswith("en"):
      return "VERB"
    elif token[0].isupper():
      return "NOUN"
    else:
10
        if token in determiners:
11
12
          return "DET"
13
  . . .
```

Rule-based part of speech tagging

```
# list of German determiners
  determiners = ["der", "die", "ein",...]
  for token in tokens:
    if token[0].islower() and
       token.endswith("en"):
      return "VERB"
    elif token[0].isupper():
      return "NOUN"
    else:
10
        if token in determiners:
12
          return "DET"
13
  . . .
```

Which token properties are used here?

Rule-based part of speech tagging

```
# list of German determiners
  determiners = ["der", "die", "ein",...]
  for token in tokens:
    if token[0].islower() and
       token.endswith("en"):
       return "VERB"
    elif token[0].isupper():
      return "NOUN"
    else:
10
        if token in determiners:
11
12
          return "DET"
13
  . . .
```

Which token properties are used here?

- Casing (upper/lower)
- Suffix (en)
- word list (Determiners)

Rule-based part of speech tagging

```
# list of German determiners
  determiners = ["der", "die", "ein",...]
  for token in tokens:
    if token[0].islower() and
       token.endswith("en"):
       return "VERB"
    elif token[0].isupper():
      return "NOUN"
10
    else:
        if token in determiners:
11
12
          return "DET"
13
  . . .
```

Which token properties are used here?

- Casing (upper/lower)
- Suffix (en)
- word list (Determiners)

Which properties are not used?

Rule-based part of speech tagging

```
# list of German determiners
  determiners = ["der", "die", "ein",...]
  for token in tokens:
    if token[0].islower() and
       token.endswith("en"):
       return "VERB"
    elif token[0].isupper():
       return "NOUN"
10
    else:
        if token in determiners:
11
12
          return "DET"
13
  . . .
```

Which token properties are used here?

- Casing (upper/lower)
- Suffix (en)
- word list (Determiners)

Which properties are not used?

- Prefixes
- Token length
- ► Sequence: Previous tag

From Rules to Neural Networks Case en-Suffix In-Det-list Classical machine learning false tokens = ["Der", "Hund", "bellt"] true tags = ["DET", "NOUN", "VERB"] false false false false table = extract features(tokens) 5 model = train(table, tags)

- ► Token properties → features
- Feature extraction / feature engineering
 - Finding useful features based on domain knowledge (e.g., linguistic knowledge)
 - ▶ Playground : What works well can really only be determined empirically

From Rules to Neural Networks Case en-Suffix In-Det-list Classical machine learning false 1 tokens = ["Der", "Hund", "bellt"] true ш tags = ["DET", "NOUN", "VERB"] 2 false false п false false

► Token properties → features

model = train(table, tags)

5

table = extract features(tokens)

- Feature extraction / feature engineering
 - Finding useful features based on domain knowledge (e.g., linguistic knowledge)
 - ▶ Playground: What works well can really only be determined empirically
- Training: Estimate which features in which order allow best decisions
 - ▶ A large collection of algorithms has been developed: Decision trees, support vector machines, naive Bayes, ...
 - ► Training data needed: Words with manually assigned correct labels

Deep learning

- ► No more feature engineering
 - Models learn how to embed instances in vector space as their first step
- ▶ More compute cycles and more training data
- Black box
 - Intermediate states not interpretable for us humans
 - Only input and output can be understood

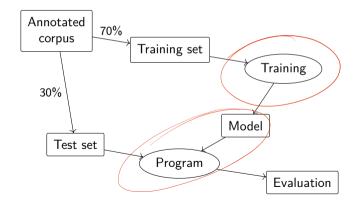
Development Stages

- Training
 - ► Estimate weights/features/rules based on annotated data
- Testing
 - Apply the model on annotated data
 - ► Estimate/calculate the correctness of its predictions
- Application
 - Train the model on as much data as possible
 - ► Assumption: More data → Better results
 - Options: Evaluate in the wild, re-train based on usage data

Always separate train and test data

Training and Testing

- ► Goal: Apply the model on new data (and estimate its performance then)
- ▶ The program cannot have seen the data, so that it is a realistic test



Understanding Machine Learning

- ► Levels of understanding
 - Intuition
 - ► Formalization (math)
 - ► Implementation (code)
 - Complexity usually hidden in libraries

Understanding Machine Learning

- Levels of understanding
 - Intuition
 - ► Formalization (math)
 - ► Implementation (code)
 - Complexity usually hidden in libraries
- Areas to distinguish
 - Learning algorithm
 - Prediction model
 - Data preparation
 - ► Feature extraction (classical ML)
 - Shape of input data
 - Evaluation options

Classification

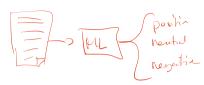
- Most straightforward task type
- Objects are categorized
- Categories (= classes) are known previously

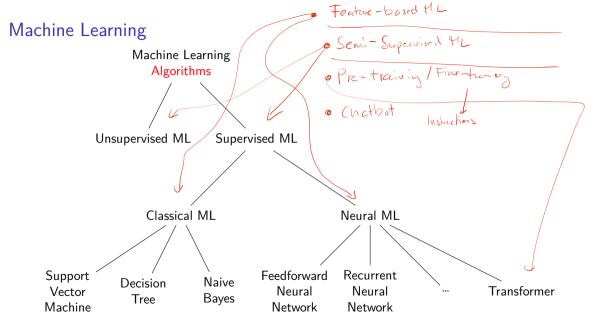
Classification

- Most straightforward task type
- Objects are categorized
- ► Categories (= classes) are known previously

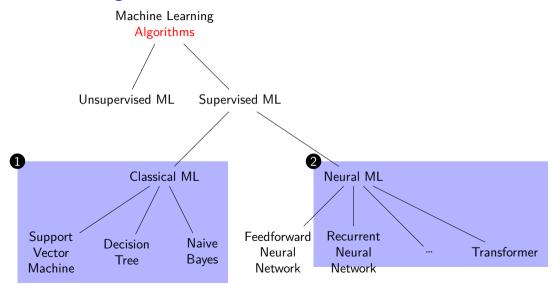
Examples

- ► Classify newspaper texts into genres (politics, economy, sports, ...)
- ► Classify reviews according to their opinion (positive, negative, neutral)
- ► Detect spam e-mail (classify mails in spam or not-spam)





Machine Learning



Feature-Based Machine Learning

- ▶ How to represent our instances for the machine learning algorithm?
- ► Feature-based machine learning:
 - Humanly interpretable representations
 - Derived from knowledge about the domain in question
 - ▶ ML learns with properties of the data are relevant when and how
- ► These are called features

Features and Tasks

Examples

- ▶ Which features are relevant for detecting spam e-mail?
- ▶ Which features are relevant for detect plagiarism?
- ▶ Which features are relevant for assigning part of speech tags?

- Used to describe classification items
- ► Feature extraction: Code to determine feature values for an item
- ► Features encode expected influence of item properties and target class
 - lacktriangle If we think a property could be relevant ightarrow make it a feature

Example

- Task: Assign part of speech information to words in context
 - ightharpoonup »The dog barks.« ightharpoonup (Det, Noun, Verb, Punct)
- ► Target class: Parts of speech (noun, verb, adjective, ...)

- Used to describe classification items
- ► Feature extraction: Code to determine feature values for an item
- Features encode expected influence of item properties and target class
 - lacktriangle If we think a property could be relevant ightarrow make it a feature

Example

- Task: Assign part of speech information to words in context
 - ightharpoonup »The dog barks.« ightharpoonup (Det, Noun, Verb, Punct)
- ► Target class: Parts of speech (noun, verb, adjective, ...)
- Features
 - Case (upper vs. lower)
 - Length
 - ► Suffix (last two characters)

Data Types

Feature	Туре
Case Length Suffix	boolea +1 int Shim
	Siry

Features Data Types

Case Three categ Length Integer	
Suffix String	ories: upper/lower/other

Feature Values

Word	Case	Length	Suffix	Class
The dog barks	upper lower lower other	3 3 5 1	he og ks	Det Noun Verb Punct

Table: Extracted features for example sentence, plus target class annotation

▶ This will be the input to the machine learning algorithm

Tables

- ▶ Tables are the backbone of quantitative analysis
- ► Convention: Items in rows, properties/features in columns

Tables

- Tables are the backbone of quantitative analysis
- ► Convention: Items in rows, properties/features in columns
- Main data types: Numbers, categories
 - If all entries are numeric, it's a (mathematical) matrix
- Various file formats
 - CSV/TSV: Comma/tab-separated values
 - XLS/XLSX: Excel format
 - ▶ Because the file format is proprietary, not used for exchange or archival
 - ► ARFF: Weka file format (= CSV + type declarations)

```
The, upper, 3, he, Det
dog, lower, 3, og, Noun
barks, lower, 5, ks, Verb
,, other, 1,, Punct
```

```
The,upper,3,he,Det
dog,lower,3,og,Noun
barks,lower,5,ks,Verb
.,other,1,.,Punct
```

- ► Plain text files
- Items separated by newline, feature values by comma
- Problems?

```
The, upper, 3, he, Det
dog, lower, 3, og, Noun
barks, lower, 5, ks, Verb
,,other, 1,., Punct
```

- Plain text files
- Items separated by newline, feature values by comma
- ▶ Problems? What if the sentence contains a comma?

```
The,upper,3,he,Det
dog,lower,3,og,Noun
barks,lower,5,ks,Verb
,,other,1,.,Punct
```

- Plain text files
- Items separated by newline, feature values by comma
- Problems? What if the sentence contains a comma?
 - Escaping: Use special characters without their special meaning: \\,

```
The,upper,3,he,Det
dog,lower,3,og,Noun
barks,lower,5,ks,Verb
,,other,1,.,Punct
```

- Plain text files
- Items separated by newline, feature values by comma
- ▶ Problems? What if the sentence contains a comma?
 - Escaping: Use special characters without their special meaning: \\,
 - Quoting: Enclose them in quote characters ","

```
The,upper,3,he,Det
dog,lower,3,og,Noun
barks,lower,5,ks,Verb
,,other,1,.,Punct
```

- Plain text files
- Items separated by newline, feature values by comma
- ▶ Problems? What if the sentence contains a comma?
 - Escaping: Use special characters without their special meaning: \\,
 - Quoting: Enclose them in quote characters ","
- Different strategies, all are used

18 / 25

Tab-Separated Values (TSV)

Listing 1: A TSV representation, with tabs represented as \rightarrow

- ▶ Similar to CSV, but with a tab instead of a comma
- ► Tab character: A single character with variable width
 - Often used for indentation
- Escaped with \t (e.g., in regular expressions)

Tab-Separated Values (TSV)

Listing 2: A TSV representation, with tabs represented as \rightarrow

		•		•	
1	Theupper-	3	he	>Det	
2	$dog \longrightarrow lower-$	3		\longrightarrow Noun	
3	$barks \longrightarrow lower-$	> 5		\longrightarrow Verb	
4	$.$ \longrightarrow other-		·	\longrightarrow Punct	

- ▶ Similar to CSV, but with a tab instead of a comma
- ▶ Tab character: A single character with variable width
 - Often used for indentation
- ► Escaped with \t (e.g., in regular expressions)
- ► CSV/TSV have undefined redge cases
 - Escaping, quoting, comments
 - Inspect before processing

CSV/TSV Tools

 Most spreadsheets programs can import and export CSV/TSV (MS Excel, Apple Numbers, Google Spreadsheets, OpenOffice Calc)

CSV/TSV Tools

 Most spreadsheets programs can import and export CSV/TSV (MS Excel, Apple Numbers, Google Spreadsheets, OpenOffice Calc)

Reading/writing CSV

- ▶ Java: Apache Commons CSV https://commons.apache.org/proper/commons-csv/
- ▶ Python: Module in standard library https://docs.python.org/3/library/csv.html
- Command line
 - csvkit https://csvkit.readthedocs.io/en/latest/
 - awk/gawk https://www.gnu.org/software/gawk/manual/gawk.html

XLS/XLSX

- ► File format used by MS Excel
- Binary, closed
- ▶ Don't use Excel as a database: https://www.youtube.com/watch?v=zUp8pkoeMss

XLS/XLSX

- ► File format used by MS Excel
- ► Binary, closed
- ▶ Don't use Excel as a database: https://www.youtube.com/watch?v=zUp8pkoeMss
- Useful for lightweight calculation/visualisation
- Difficult to integrate with other tools

CoNLL-Format

- Often used in natural language processing
- ▶ Similar to CSV with one token per line, but
 - Row order shows token order
 - Empty lines indicate sentence boundaries
 - ▶ What is exactly in each column differs: CoNLL != CoNLL
 - https://universaldependencies.org/format.html
 - https://cemantix.org/conll/2012/data.html

Data Types

CSV/TSV files

- Everything is a string
- ▶ If you import/read a CSV table, you need to convert things into appropriate data types
- Potential error source:
 - If you inspect the beginning of a long table and find that column 5 contains integer values
 - it could still be the case that at some point column 5 contains something else.
 - There are no guarantees!

Preparation Steps

Data Analysis

- Important to get to know your data set
 - ► How many instances are there?
 - ► How are the classes distributed?
 - ► Text features: How long are they (min/max/average)? Are they categories or free text?
 - ▶ Numeric features: What's their distribution? Does the enumeration encode something?

Preparation Steps

Data Analysis

- Important to get to know your data set
 - ► How many instances are there?
 - ► How are the classes distributed?
 - ► Text features: How long are they (min/max/average)? Are they categories or free text?
 - ▶ Numeric features: What's their distribution? Does the enumeration encode something?

Preprocessing

- ▶ Light-weight processing before training and during development
- ► Typical tasks: Casing, stop words, lemmatization

Summary

- ▶ Machine learning: Let the machine figure out which properties are relevant when
- Feature-based ML: Humans define domain-specific features
- ▶ Neural ML: Machine also figures out which features to use
- Train and test data
- ► ML data often comes in tables
- Preparatory steps: Data analysis and preprocessing
- Next session: How to evaluate ML systems