## Recap

- Evaluation of machine learning models
- Accuracy, error rate
- Single score for entire classification
- Precision, Recall, F-Score
- Scores for each class
- Precision: How many of the items classified as $c$ are truly category $c$ ?
- Recall: How many of the items that are truly $c$ did the system find?
- Baseline

Das Data Center for the Humanities (DCH) an der Universität zu Köln sucht
zum nächstmöglichen Zeitpunkt eine
Studentische Hilfskraft ( $\mathrm{w} / \mathrm{m} / \mathrm{d}$ )
(für bis zu 24 Monate, 19 Stunden/Woche)
Das Data Center for the Humanities ( DCH ) berăt und unterstützt als geisteswissenschaftliches Datenzentrum an der Universität zu Köln Forschende der Philosophischen Fakultät im Bereich Forschungsdatenmanagement. Zur Unterstützung im Bereich Öffentlichkeitsarbeit, Veranstaltungsorganisation und Kommunikation sucht das DCH zum nächstmöglichen Zeitpunkt eine wissenschaftliche Hilfskraft (WHB).
Aufgaben

- Unterstützung und Zuarbeit innerhalb fachwissenschaftlicher und technischer Recherche
- Unterstützung bei der Organisation von internen und öffentlichen Workshops und Vernetzungsveranstaltungen
- Redaktionelle Arbeiten und Layout des Jahresberichts des DCH
- Design von wissenschaftlichen Postern und Awareness-Materialien im Forschungsdatenmanagement
- Unterstützung des DCH-Teams bei der technischen und inhaltlichen Betreuung von Websites


## Notwendige Kenntnisse und Kompetenzen

- Geisteswissenschaftliches Studium, idealerweise mit starkem Forschungsschwerpunkt
- gute/sehr gute Deutsch- und Englischkenntnisse


## Wünschenswerte Kenntnisse und Kompetenzen

- Interesse an Content Management Systemen (Typo3, Wordpress)
- Adobe InDesign- und Illustrator-Kenntnisse
- Erfahrung im Umgang mit digitalen Daten
- Erfahrung bei der Abfassung von wissenschaftlichen Texten
- Verständnis für Strukturen an Hochschulen
- Selbstsicherer Umgang mit Forscher:innen verschiedener Disziplinen


## Bewerburg frrist: 31.05.2024

Bewerbungenmit Lebenslauf sind elektronisch einzureichen bei patrick.helling@unikoeln.de
 terpatrick.helling@uni-koeln.de

# Decision Tree <br> Sprachverarbeitung (VL + Ü) 

Nils Reiter

May 16, 2024

## Prediction Model - Toy Example



## Prediction Model - Toy Example



- What are the instances?


## Prediction Model - Toy Example



- What are the instances?
- Situations we are in (this is not really automatisable)


## Prediction Model - Toy Example



- What are the instances?
- Situations we are in (this is not really automatisable)
- What are the features?


## Prediction Model - Toy Example



- What are the instances?
- Situations we are in (this is not really automatisable)
- What are the features?
- Consciousness
- Clothing situation
- Promises made
- Whether we are driving
- ...

Trees

- Well-established data structure in CS


## Trees



- a (possibly empty) set of children
- Children are also trees


## Trees

- Well-established data structure in CS
- A tree is a pair that contains
- some value and
- a (possibly empty) set of children
- Children are also trees
- Recursive definition: "A tree is something and a bunch of sub trees"
- Recursion is an important ingredient in many algorithms and data structures


## Trees

- Well-established data structure in CS
- A tree is a pair that contains
- some value and
- a (possibly empty) set of children
- Children are also trees
- Recursive definition: "A tree is something and a bunch of sub trees"
- Recursion is an important ingredient in many algorithms and data structures
- If the tree has labels on the edges, the pair becomes a triple


## Trees

- Well-established data structure in CS
- A tree is a pair that contains
- some value and
- a (possibly empty) set of children
- Children are also trees
- Recursive definition: "A tree is something and a bunch of sub trees"
- Recursion is an important ingredient in many algorithms and data structures
- If the tree has labels on the edges, the pair becomes a triple


## Prediction Model

- Each non-leaf node in the tree represents one feature
- Each leaf node represents a class label
- Each branch at this node represents one possible feature value
- Number of branches $=\left|v\left(f_{i}\right)\right|$ (number of possible values)



## Prediction Model

- Each non-leaf node in the tree represents one feature
- Each leaf node represents a class label
- Each branch at this node represents one possible feature value
- Number of branches $=\left|v\left(f_{i}\right)\right|$ (number of possible values)
- Make a prediction for $x$ :

1. Start at root node
2. If it's a leaf node

UEEP
DRINUING

- assign the class label

3. Else

- Check node which feature is to be tested $\left(f_{i}\right)$
- Extract $f_{i}(x)$
- Follow corresponding branch
- Go to 2

Learning Algorithm

- Core idea: The tree represents splits of the training data ${ }_{4}$



## Learning Algorithm

- Core idea: The tree represents splits of the training data

1. Start with the full data set $D_{\text {train }}$ as $D$
2. If $D$ only contains members of a single class:

- Done.

3. Else:

- Select a feature $f_{i}$
- Extract feature values of all instances in $D$
- Split the data set according to $f_{i}: D=D_{a} \cup D_{b} \cup D_{c} \ldots$ $D_{\alpha}=\left\{x \in D \mid f_{i}(x)=\alpha\right\}, \quad a, b, c \in v\left(f_{i}\right)$
- Go back to 2


## Learning Algorithm

- Core idea: The tree represents splits of the training data

1. Start with the full data set $D_{\text {train }}$ as $D$
2. If $D$ only contains members of a single class:

- Done.

3. Else:

- Select a feature $f_{i}$
- Extract feature values of all instances in $D$
- Split the data set according to $f_{i}: D=D_{a} \cup D_{b} \cup D_{c} \ldots$ $D_{\alpha}=\left\{x \in D \mid f_{i}(x)=\alpha\right\}, \quad a, b, c \in v\left(f_{i}\right)$
- Go back to 2
- Remaining question: How to select features?


## Feature Selection

- What is a good feature?
- One that maximizes homogeneity in the split data set


## Feature Selection

- What is a good feature?
- One that maximizes homogeneity in the split data set
- "Homogeneity"
- Increase

- No increase
$\{\boldsymbol{\omega} \boldsymbol{\phi} \boldsymbol{\phi} \cap\}=\{\boldsymbol{\omega}\} \cup\{\boldsymbol{\omega} \boldsymbol{\phi} \cap\}$


## Feature Selection

- What is a good feature?
- One that maximizes homogeneity in the split data set
- "Homogeneity"
- Increase

- No increase $\{\boldsymbol{\omega} \boldsymbol{\phi} \boldsymbol{\phi} \odot\}=\{\boldsymbol{\phi}\} \cup\{\boldsymbol{\omega} \boldsymbol{\phi} \odot\}$
- Homogeneity: Entropy/information


## Feature Selection

- What is a good feature?
- One that maximizes homogeneity in the split data set
- "Homogeneity"
- Increase

- No increase $\{\boldsymbol{\omega} \boldsymbol{\phi} \boldsymbol{\phi} \odot\}=\{\boldsymbol{\omega}\} \cup\{\boldsymbol{\omega} \boldsymbol{\phi} \odot\}$
- Homogeneity: Entropy/information
- Rule: Always select the feature with the highest information gain (IG)
- (= the highest reduction in entropy $=$ the highest increase in homogeneity)


## Entropy

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaaa


## Entropy

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaa - only one symbol, very certain


## Entropy

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaa - only one symbol, very certain
- abbaabbabbaaba


## Entropy

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaa - only one symbol, very certain
- abbaabbabbaaba - two symbols, evenly distributed, 50:50


## Entropy

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaa - only one symbol, very certain
- abbaabbabbaaba - two symbols, evenly distributed, 50:50
- aaaaabbaaaaaba


## Entropy

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaa - only one symbol, very certain
- abbaabbabbaaba - two symbols, evenly distributed, 50:50
- aaaaabbaaaaaba - two symbols, unevenly distributed, 75:25


## Entropy

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaa - only one symbol, very certain
- abbaabbabbaaba - two symbols, evenly distributed, 50:50
- aaaaabbaaaaaba - two symbols, unevenly distributed, 75:25
- cbabcababcbaca


## Entropy

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaa - only one symbol, very certain
- abbaabbabbaaba - two symbols, evenly distributed, 50:50
- aaaaabbaaaaaba - two symbols, unevenly distributed, 75:25
- cbabcababcbaca - three symbols, evenly distributed, 33:53:33


## Entropy

## Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaa - only one symbol, very certain
- abbaabbabbaaba - two symbols, evenly distributed, 50:50
- aaaaabbaaaaaba - two symbols, unevenly distributed, 75:25
- cbabcababcbaca - three symbols, evenly distributed, 33:66
- nmkfjigeahldcb


## Entropy

## Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
- aaaaaaaaaaaaaa - only one symbol, very certain
- abbaabbabbaaba - two symbols, evenly distributed, 50:50
- aaaaabbaaaaaba - two symbols, unevenly distributed, 75:25
- cbabcababcbaca - three symbols, evenly distributed, 33:66
- nmkfjigeahldcb - 14 symbols, very uncertain
- Certainty depends on number of different symbols and on their distribution

Entropy (Shannon, 1948)

$$
H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log _{b} p\left(x_{i}\right)
$$

Entropy (Shannon, 1948)
Casing $=\{T, \downarrow,-\}$


## Entropy (Shannon, 1948)



## Entropy (Shannon, 1948)



## Entropy (Shannon, 1948)



## Entropy (Shannon, 1948)



## Interpretation

Entropy is the average number of bits* we need to specify an outcome of the random variable (* for $b=2$ )

Entropy (Shannon, 1948)
Examples

$$
\begin{aligned}
& \underline{H(\{\boldsymbol{Q} \boldsymbol{Q} \boldsymbol{\sim} \boldsymbol{Q}\})}=-\left(\frac{1}{4}\right) \log _{2}\left(\frac{1}{4}\right)=0 \boldsymbol{J}
\end{aligned}
$$

## Entropy (Shannon, 1948)

Examples

$$
\begin{aligned}
& H(\{\boldsymbol{n} \cap \mathrm{CQn}\})=1.585 \\
& H(\{\wedge \cap \otimes\})=2 \\
& H(\{n m k f j \text { jigeahldcb }\})=3.807
\end{aligned}
$$

## Entropy

## Mutual Information

- Entropy: Amount of uncertainty in a random variable
- Joint entropy: Amount of uncertainty in two random variables
- Conditional entropy: Amount of uncertainty, when another random variable is known


## Entropy

## Mutual Information

- Entropy: Amount of uncertainty in a random variable
- Joint entropy: Amount of uncertainty in two random variables
- Conditional entropy: Amount of uncertainty, when another random variable is known
- Mutual Information
- Reduction of entropy in one random variable by knowing about the other
- $M I(X, Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=\sum_{x, y} p(x, y) \log _{2} \frac{p(x, y)}{p(x) p(y)}$


## Entropy

## Mutual Information

- Entropy: Amount of uncertainty in a random variable
- Joint entropy: Amount of uncertainty in two random variables
- Conditional entropy: Amount of uncertainty, when another random variable is known
- Mutual Information
- Reduction of entropy in one random variable by knowing about the other
- $M I(X, Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=\sum_{x, y} p(x, y) \log _{2} \frac{p(x, y)}{p(x) p(y)}$
- Point-wise Mutual Information
- Statement about values of random variable (i.e., occurrence of specific word)
- $I\left(w_{1}, w_{2}\right)=\log _{2} \frac{p\left(w_{1}, w_{2}\right)}{p\left(w_{1}\right) p\left(w_{2}\right)}$

Feature Selection



$$
\begin{aligned}
& H(\{\boldsymbol{\wedge} \boldsymbol{\wedge} \boldsymbol{\wedge} \cap\})=H([3,1])=0.562 \\
& H(\{\bigcirc\})=H([1])=0 \\
& H(\{\boldsymbol{\sim} \boldsymbol{\uparrow} \boldsymbol{\uparrow}\})=H([3])=0
\end{aligned}
$$



## Feature Selection




$$
\begin{aligned}
& H(\{\boldsymbol{\wedge} \boldsymbol{\wedge} \boldsymbol{\uparrow} \cap\})=H([3,1])=0.562 \\
& H(\{\bigcirc\})=H([1])=0 \\
& H(\{\boldsymbol{\uparrow} \boldsymbol{\uparrow} \boldsymbol{\phi}\})=H([3])=0
\end{aligned}
$$

$$
\begin{aligned}
& H(\{\boldsymbol{\sim} \boldsymbol{\uparrow} \boldsymbol{\uparrow} \cap\})=H([3,1])=0.562 \\
& H(\{\boldsymbol{\uparrow}\})=H([1])=0 \\
& H\left(\left\{\begin{array}{|c|c}
\infty \\
)
\end{array}\right)=H([2,1])=0.637\right.
\end{aligned}
$$

$$
\begin{aligned}
& =0.562-0=0.562 \\
& I G\left(f_{2}\right)=H(\{\boldsymbol{\uparrow} \boldsymbol{\uparrow} \cap\})-\operatorname{avg}_{\text {micro }}(H(\{\boldsymbol{\oplus}\}), H(\{\boldsymbol{\uparrow} \boldsymbol{\wedge} \cap\})) \\
& =0.562-\left(\frac{3}{4} 0.637+\frac{1}{4} 0\right) \\
& =0.562-0.562-0.477=\underline{0.085}
\end{aligned}
$$

## Feature Selection using Entropy

- We calculate entropy for the target class
- But in different sub sets of the data set


## Feature Selection using Entropy

- We calculate entropy for the target class
- But in different sub sets of the data set

Listing 2: Feature selection in pseudo code for a data set $D$

```
function select_feature(D):
    base_entropy = entropy(D)
    ig_map = {}
    foreach feature f:
        weighted_feature_entropy = 0
        foreach feature value v:
        D_v = subset of D with all instances that have the value v
        sub_entropy = entropy(D_v)
        sub_size = length(D_v)
        weighted_feature_entropy = weighted_feature_entropy + ( sub_entropy * sub_size )
        Information_gain = base_entropy - ( (weighted_feature_entropy) / length(D) )
        ig_map.put(f, information_gain)
    return maximum from ig_map
```


## Limitations

- Only categorical attributes
- Cannot handle missing values
- Tends to overfit: »In my experience, almost all decision trees can benefit from simplification «
(Quinlan, 1993, 36)
- Even today, overfitting is a huge challenge for ML algorithms!
$\Rightarrow$ Extension: C4.5
(Quinlan, 1993)



## Subsection 1

Example: Spam Classification

## Data set

- Data set: 100 e-mails, manually classified as spam or not span (50/50)
- Classes $C=\{\underline{\text { true } / 1, ~ f a l s e ~} / 0\}$
- Features: Presence of each of these tokens (manually selected): ıcasinoィ, ıenlargement $\wedge$,


|  | reasino | 2entargement | 2 meeting | (Profite | Tsupers | thext | 1xxx\| |  | C |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 0 | 0 | (1) | 1 | 1 |  | 0 |
| 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |  |  |
| 3 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |  |  |
| 4 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |  |  |
| 5 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |  | , |

## Learning Algorithm

First step: Use the full data set

$$
H(\text { full data set })=1
$$

## Learning Algorithm

First step: Use the full data set

$$
\begin{aligned}
& H(\text { full data set })=1 \\
& H(\imath \text { casino }=1)=0.9991 \\
& H(\imath \text { casino }=0)=0.9985
\end{aligned}
$$



## Learning Algorithm

First step: Use the full data set

```
\(H\) (full data set) \(=1\)
\(H(\) )casino \(=1)=0.9991\)
\(\underline{H(\text { )casino }=0)}=0.9985\)
    H(rcasinor \(=\frac{(56 \times 0.9991)+(44 \times 0.9985)}{100}<0.9989\)
    \(I G(\) »casino» \()=1-0.9989 \neq 0.0012\)
    \(I G(\) ıprofit \(\iota)=0 . \overline{0073}\)
```


## Learning Algorithm

First step: Use the full data set

$$
\begin{aligned}
H(\text { full data set }) & =1 \\
H(\imath c a s i n o \iota=1) & =0.9991 \\
H(\text { casino }=0) & =0.9985 \\
H(\iota \text { casino }) & =\frac{(56 \times 0.9991)+(44 \times 0.9985)}{100}=0.9989 \\
I G(\iota \text { casino }) & =1-0.9989=0.0012 \\
I G(\iota \text { profit } \iota) & =0.0073
\end{aligned}
$$

## Learning Algorithm

Next step: Use the data set after application of the first selected feature profits $=0$

$$
\begin{aligned}
H(\text { data set }) & =0.99403 \\
H(\text { ıcasino }=1) & =0.9910 \\
H(\text { casino }=0) & =0.9963 \\
I G(\text { ८casino }) & =0.00029 \\
I G(\text { stext }) & =0.01151
\end{aligned}
$$

## Learning Algorithm

Next step: Use the data set after application of the first selected feature ıprofit $\iota=0$ ıprofitı=1

$$
\begin{aligned}
H(\text { data set }) & =0.99403 \\
H(\imath \text { casino }\langle=1) & =0.9910 \\
H(\imath \text { casino } \iota=0) & =0.9963 \\
I G(\imath \text { casino }) & =0.00029 \\
I G(\imath \text { text }) & =0.01151
\end{aligned}
$$

## Learning Algorithm

Next step: Use the data set after application of the first selected feature
ıprofit ^ = 0

$$
\begin{aligned}
H(\text { data set }) & =0.99403 \\
H(\imath \text { casino }=1) & =0.9910 \\
H(\imath \text { casino } \iota=0) & =0.9963 \\
I G(\imath \text { casino }) & =0.00029 \\
I G(\imath \text { text } \iota) & =0.01151
\end{aligned}
$$

) profitı = 1

$$
\begin{aligned}
H(\text { data set }) & =0.99107 \\
H(\imath \text { casino }=1) & =0.9366 \\
H(\imath \text { casino }=0) & =1 \\
I G(\imath \text { casino» }) & =0.0150 \\
I G(» \text { meeting }) & =0.00029
\end{aligned}
$$

## Learning Algorithm



Next step: Use the data set after application of the first selected feature ) profit $\iota=0$ ıprofitı=1

$$
\begin{aligned}
& H \text { (data set) }=0.99403 \\
& H(\text { )casino }=1)=0.9910 \\
& H(\text { )casino }<=0)=0.9963 \\
& I G(\text { ıcasinoィ })=0.00029 \\
& I G(\text { „text } \iota)=0.01151
\end{aligned}
$$

## Learning Algorithm

Next step: Use the data set after application of the first two layers of selected features


Section 1
Summary

## Summary

- Decision Tree
- Prediction model
- Transparent: Easy to apply by pumans $_{0}$
- Easy to implement: Follow the path ffom root to leaf
- Learning algorithm


Transparent: E
Easy to implem
Recursively spl


- Recursively split the training data set according to features
- Use information gain to maximize the homogeneity in the sub sets
- Compared with Naive Bayes
- Feature dependence modeled through tree structure
- DT in Weka: Try for yourselves! ;)


## References I

围 Manning, Christopher D./Hinrich Schütze (1999). Foundations of Statistical Natural Language Processing. Cambridge, Massachusetts and London, England: MIT Press.
R Quinlan, J. Ross (1986). »Induction of Decision Trees«. In: Machine Learning 1.1, pp. 81-106. DOI: 10.1007/BF00116251.

- (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

且 Shannon, Claude E. (1948). »A mathematical theory of communication «. In: The Bell System Technical Journal 27.3, pp. 379-423.

