
Recap

▶ Evaluation of machine learning models
▶ Accuracy, error rate

▶ Single score for entire classification
▶ Precision, Recall, F-Score

▶ Scores for each class
▶ Precision: How many of the items classified as c are truly category c?
▶ Recall: How many of the items that are truly c did the system find?

▶ Baseline
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Das Data Center for the Humanities (DCH) an der Universität zu Köln sucht 
zum nächstmöglichen Zeitpunkt eine 

Studentische Hilfskraft (w/m/d) 
(für bis zu 24 Monate, 19 Stunden/Woche) 

   
Das Data Center for the Humanities (DCH) berät und unterstützt als geisteswissen-

schaftliches Datenzentrum an der Universität zu Köln Forschende der Philosophischen 

Fakultät im Bereich Forschungsdatenmanagement. Zur Unterstützung im Bereich Öf-

fentlichkeitsarbeit, Veranstaltungsorganisation und Kommunikation sucht das DCH zum 

nächstmöglichen Zeitpunkt eine wissenschaftliche Hilfskraft (WHB).   

Aufgaben 
● Unterstützung und Zuarbeit innerhalb fachwissenschaftlicher und technischer 

Recherche 

● Unterstützung bei der Organisation von internen und öffentlichen Workshops 

und Vernetzungsveranstaltungen 

● Redaktionelle Arbeiten und Layout des Jahresberichts des DCH 

● Design von wissenschaftlichen Postern und Awareness-Materialien im For-

schungsdatenmanagement 

● Unterstützung des DCH-Teams bei der technischen und inhaltlichen Betreuung 

von Websites 

Notwendige Kenntnisse und Kompetenzen 
● Geisteswissenschaftliches Studium, idealerweise mit starkem Forschungsschwer-

punkt 

● gute/sehr gute Deutsch- und Englischkenntnisse 

Wünschenswerte Kenntnisse und Kompetenzen 
● Interesse an Content Management Systemen (Typo3, Wordpress) 

● Adobe InDesign- und Illustrator-Kenntnisse 

● Erfahrung im Umgang mit digitalen Daten 

● Erfahrung bei der Abfassung von wissenschaftlichen Texten 

● Verständnis für Strukturen an Hochschulen 

● Selbstsicherer Umgang mit Forscher:innen verschiedener Disziplinen 

  

Bewerbungsfrist: 31.05.2024 

Bewerbungen mit Lebenslauf sind elektronisch einzureichen bei patrick.helling@uni-

koeln.de 

  

Für weitere Informationen und Nachfragen wenden Sie sich bitte an Patrick Helling un-

ter patrick.helling@uni-koeln.de   

  

 

Nils Reiter



Decision Tree
Sprachverarbeitung (VL + Ü)

Nils Reiter

May 16, 2024



Prediction Model – Toy Example

▶ What are the instances?

▶ Situations we are in
(this is not really automatisable)

▶ What are the features?

▶ Consciousness
▶ Clothing situation
▶ Promises made
▶ Whether we are driving
▶ …
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Trees

▶ Well-established data structure in CS

▶ A tree is a pair that contains
▶ some value and
▶ a (possibly empty) set of children

▶ Children are also trees
▶ Recursive definition: “A tree is something and a bunch of sub trees”

▶ Recursion is an important ingredient in many algorithms and data structures
▶ If the tree has labels on the edges, the pair becomes a triple

v

w u

s
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Prediction Model
▶ Each non-leaf node in the tree represents one feature
▶ Each leaf node represents a class label
▶ Each branch at this node represents one possible feature value

▶ Number of branches = |v(fi)| (number of possible values)

▶ Make a prediction for x:
1. Start at root node
2. If it’s a leaf node

▶ assign the class label
3. Else

▶ Check node which feature is to be tested (fi)
▶ Extract fi(x)
▶ Follow corresponding branch
▶ Go to 2
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Learning Algorithm

▶ Core idea: The tree represents splits of the training data

1. Start with the full data set Dtrain as D
2. If D only contains members of a single class:

▶ Done.
3. Else:

▶ Select a feature fi
▶ Extract feature values of all instances in D
▶ Split the data set according to fi: D = Da ∪ Db ∪ Dc . . .

Dα = {x ∈ D|fi(x) = α}, a, b, c ∈ v(fi)
▶ Go back to 2

▶ Remaining question: How to select features?
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Feature Selection

▶ What is a good feature?
▶ One that maximizes homogeneity in the split data set

▶ “Homogeneity”
▶ Increase
{♠♠♠♡} = {♡} ∪ {♠♠♠}

▶ No increase
{♠♠♠♡} = {♠} ∪ {♠♠♡}

▶ Homogeneity: Entropy/information Shannon (1948)
▶ Rule: Always select the feature with the highest information gain (IG)

▶ (= the highest reduction in entropy = the highest increase in homogeneity)
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Entropy
Intuition

▶ Measures the amount of uncertainty
▶ How uncertain is the next symbol in these sequences?

▶ aaaaaaaaaaaaaa

– only one symbol, very certain
▶ abbaabbabbaaba – two symbols, evenly distributed, 50:50
▶ aaaaabbaaaaaba – two symbols, unevenly distributed, 75:25
▶ cbabcababcbaca – three symbols, evenly distributed, 33:66
▶ nmkfjigeahldcb – 14 symbols, very uncertain

▶ Certainty depends on number of different symbols and on their distribution
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Entropy (Shannon, 1948)

H(X) = −
n∑

i=1

p(xi) logb p(xi)

number of classes present in X
relative frequency of the class

logb(x) = y
exactly if
by = x:

25 = 32⇔ log2 32 = 5

Interpretation
Entropy is the average number of bits∗ we need to specify an outcome of the random variable
(∗ for b = 2)
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Entropy (Shannon, 1948)
Examples

H({♠♠♠♠}) = −4

4
log2

4

4
= 0

H({♠♠♠♡}) = −

3

4
log2

3

4︸ ︷︷ ︸
♠

+
1

4
log2

1

4︸ ︷︷ ︸
♡

 = 0.811

H({♠♠♡♡}) = . . . = 1 = H({♠♠♠♡♡♡}) = . . .

H({♠♠♡♡♣♣}) = 1.585

H({♠♡♣♢}) = 2

H({nmkfjigeahldcb}) = 3.807
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Entropy
Mutual Information

▶ Entropy: Amount of uncertainty in a random variable
▶ Joint entropy: Amount of uncertainty in two random variables
▶ Conditional entropy: Amount of uncertainty, when another random variable is known

▶ Mutual Information
▶ Reduction of entropy in one random variable by knowing about the other
▶ MI(X,Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) =

∑
x,y p(x, y) log2

p(x,y)
p(x)p(y)

▶ Point-wise Mutual Information
▶ Statement about values of random variable (i.e., occurrence of specific word)
▶ I(w1,w2) = log2

p(w1,w2)
p(w1)p(w2)

Manning/Schütze, 1999, 67
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Feature Selection
{♠♠♠♡}

{♡} {♠♠♠}

H({♠♠♠♡}) = H([3, 1]) = 0.562

H({♡}) = H([1]) = 0

H({♠♠♠}) = H([3]) = 0

{♠♠♠♡}

{♠} {♠♠♡}

H({♠♠♠♡}) = H([3, 1]) = 0.562

H({♠}) = H([1]) = 0

H({♠♠♡}) = H([2, 1]) = 0.637

IG(f1) = H({♠♠♠♡})− avgmicro
(
H({♡}),H({♠♠♠})

)
= 0.562− 0 = 0.562

IG(f2) = H({♠♠♠♡})− avgmicro
(
H({♠}),H({♠♠♡})

)
= 0.562− (

3

4
0.637 +

1

4
0)

= 0.562− 0.562− 0.477 = 0.085
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Feature Selection using Entropy
▶ We calculate entropy for the target class
▶ But in different sub sets of the data set

Listing 1: Feature selection in pseudo code for a data set D
1 function select_feature(D):
2 base_entropy = entropy(D)
3 ig_map = {}
4 foreach feature f:
5 weighted_feature_entropy = 0
6 foreach feature value v:
7 D_v = subset of D with all instances that have the value v
8 sub_entropy = entropy(D_v)
9 sub_size = length(D_v)

10 weighted_feature_entropy = weighted_feature_entropy + ( sub_entropy * sub_size )
11 information_gain = base_entropy - ( (weighted_feature_entropy) / length(D) )
12 ig_map.put(f, information_gain)
13 return maximum from ig_map
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ID3

J. Ross Quinlan (1986). »Induction of Decision Trees«. In: Machine Learning 1.1, pp. 81–106.
doi: 10.1007/BF00116251

Limitations
▶ Only categorical attributes
▶ Cannot handle missing values
▶ Tends to overfit: »In my experience, almost all decision trees can benefit from

simplification« (Quinlan, 1993, 36)
▶ Even today, overfitting is a huge challenge for ML algorithms!

⇒ Extension: C4.5 (Quinlan, 1993)
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Subsection 1

Example: Spam Classification



Data set

▶ Data set: 100 e-mails, manually classified as spam or not spam (50/50)
▶ Classes C = {true/1, false/0}

▶ Features: Presence of each of these tokens (manually selected): ›casino‹, ›enlargement‹,
›meeting‹, ›profit‹, ›super‹, ›text‹, ›xxx‹

Mail ›casino‹ ›enlargement‹ ›meeting‹ ›profit‹ ›super‹ ›text‹ ›xxx‹ C

1 1 1 0 0 1 1 1 0
2 0 1 0 1 0 0 0 1
3 1 0 1 0 1 0 0 0
4 1 1 1 0 0 0 0 0
5 0 1 1 0 0 1 1 1
...

...
...

...
...

...
...

...
...

Lecture 5 17 / 23

Nils Reiter

Nils Reiter

Nils Reiter



Learning Algorithm
First step: Use the full data set

H(full data set) = 1

H(›casino‹ = 1) = 0.9991

H(›casino‹ = 0) = 0.9985

H(›casino‹) =
(56× 0.9991) + (44× 0.9985)

100
= 0.9989

IG(›casino‹) = 1− 0.9989 = 0.0012

IG(›profit‹) = 0.0073
... ...

›profit‹
0 1
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Learning Algorithm

Next step: Use the data set after application of the first selected feature
›profit‹ = 0

H(data set) = 0.99403

H(›casino‹ = 1) = 0.9910

H(›casino‹ = 0) = 0.9963

IG(›casino‹) = 0.00029

IG(›text‹) = 0.01151

›profit‹ = 1

H(data set) = 0.99107

H(›casino‹ = 1) = 0.9366

H(›casino‹ = 0) = 1

IG(›casino‹) = 0.0150

IG(›meeting‹) = 0.00029

›profit‹
0 1

›text‹ ›casino‹
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Learning Algorithm

Next step: Use the data set after application of the first two layers of selected features

›profit‹

›text‹ ›casino‹
0 1

›enlargement‹ ›casino‹
0 1

›xxx‹ ›super‹
0 1

...
...

...
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Section 1

Summary



Summary

Summary

▶ Decision Tree
▶ Prediction model

▶ Transparent: Easy to apply by humans
▶ Easy to implement: Follow the path from root to leaf

▶ Learning algorithm
▶ Recursively split the training data set according to features
▶ Use information gain to maximize the homogeneity in the sub sets

▶ Compared with Naive Bayes
▶ Feature dependence modeled through tree structure

▶ DT in Weka: Try for yourselves! ⌣

Lecture 5 22 / 23

Nils Reiter



Summary
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