Recap: Decision Tree, Problem Gambling

Decision tree

- Classification method
- Transparent for humans (for limited number of features)
- Core idea:
 - Repeatedly split the data set using features, until sub sets are »pure«
 - Split according to information gain of the features
- Problem Gambling
 - Text classification problem
 - Non-linguistic use-case, with criteria grounded in medicinal diagnostics
 - BERT: First »large language model«
 - Pre-training / fine-tuning paradigm

🛨 🛛 Wahlen zum Europäischen Parlament

Sonntag, 9. Juni, 9:00-18:00 Uhr

- 96 Abgeordnete aus Deutschland
- Listenwahl (d.h. Parteien)

Relevant für uns, weil (praktisch alle) IT-Themen EU-Themen sind

- Künstliche Intelligenz
- Digitale Märkten
- Chatkontrolle
- Datenschutzgrundverordnung
- Und natürlich: Klimakrise

$\begin{array}{l} \mbox{Naive Bayes} \\ \mbox{Sprachverarbeitung (VL + \ddot{U})} \end{array}$

Nils Reiter

June 6, 2024

Introduction and Overview

- Second machine learning method (after decision trees)
- Probabilistic method (i.e., probabilities are involved)
- Feature-based method

Basic Probability Theory

Naive Bayes Algorithm

Example: Spam Classification

Section 1

Basic Probability Theory

Example: Cards

- ▶ 32 cards Ω (sample space)
- 4 colors: $C = \{\clubsuit, \diamondsuit, \heartsuit, \heartsuit\}$
- ▶ 8 values: $V = \{7, 8, 9, 10, J, Q, K, A\}$
- ▶ Individual cards ()outcomes() are denoted with value and color: $8\heartsuit$

Events

- ▶ Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
- \blacktriangleright Events will be denoted with E

Events

- ▶ Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
- \blacktriangleright Events will be denoted with E

Examples

▶ »We draw a heart eight $- E = \{ 8 \heartsuit \}$

Events

- ▶ Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
- \blacktriangleright Events will be denoted with E

- ▶ »We draw a heart eight $E = \{ 8 \heartsuit \}$
- »We draw card with a diamond«

Events

- ► Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
- \blacktriangleright Events will be denoted with E

- ▶ »We draw a heart eight $E = \{ 8 \heartsuit \}$
- ▶ »We draw card with a diamond $-E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
- \blacktriangleright Events will be denoted with E

- ▶ »We draw a heart eight $E = \{ 8 \heartsuit \}$
- ▶ »We draw card with a diamond $-E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- »We draw a queen«

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
- \blacktriangleright Events will be denoted with E

- ▶ »We draw a heart eight $E = \{ 8 \heartsuit \}$
- ▶ »We draw card with a diamond $-E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- ▶ »We draw a queen« $E = \{Q\clubsuit, Q\diamondsuit, Q\diamondsuit\}$

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
- \blacktriangleright Events will be denoted with E

- ▶ »We draw a heart eight $E = \{ 8 \heartsuit \}$
- ▶ »We draw card with a diamond $-E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- ▶ »We draw a queen « $E = \{Q\clubsuit, Q\diamondsuit, Q\heartsuit\}$
- »We draw a heart eight or diamond 10«

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
- \blacktriangleright Events will be denoted with E

- ▶ »We draw a heart eight $E = \{ 8 \heartsuit \}$
- ▶ »We draw card with a diamond $-E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- ▶ »We draw a queen« $E = \{Q\clubsuit, Q\diamondsuit, Q\diamondsuit\}$
- ▶ »We draw a heart eight or diamond $10 \ll E = \{8\heartsuit, 10\diamondsuit\}$
- »We draw any card«

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
- \blacktriangleright Events will be denoted with E

- ▶ »We draw a heart eight $-E = \{ 8 \heartsuit \}$
- ▶ »We draw card with a diamond $-E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- ▶ »We draw a queen« $E = \{Q\clubsuit, Q\diamondsuit, Q\diamondsuit\}$
- ▶ »We draw a heart eight or diamond $10 \ll E = \{8\heartsuit, 10\diamondsuit\}$
- »We draw any card« $E = \Omega$

Probabilities

• Probability p(E): Ratio of size of E to size of Ω (Laplace)

- $\blacktriangleright \ 0 \le p \le 1$
- ▶ p(E) = 0: Impossible event p(E) = 1: Certain event
- ▶ p(E) = 0.000001: Very unlikely event

Probabilities

Probability p(E): Ratio of size of E to size of Ω (Laplace)

- $\blacktriangleright \ 0 \le p \le 1$
- ▶ p(E) = 0: Impossible event p(E) = 1: Certain event
- ▶ p(E) = 0.000001: Very unlikely event

- If all outcomes are equally likely: $p(E) = \frac{|E|}{|\Omega|}$
- ► $p(\{8\heartsuit\}) = \frac{1}{32}$
- ▶ $p(\{9\clubsuit,9\diamondsuit,9\diamondsuit,9\heartsuit\}) = \frac{4}{32}$
- $p(\Omega) = 1$ (must happen, certain event)

Probability and Relative Frequency

- Probability p: Theoretical concept, idealization, expectation
- Relative Frequency f: Concrete measure
 - Normalised number of *observed* events

Example

After 10 cards (with returning and shuffling), the event \blacklozenge took place 8 times: $f(\{\diamondsuit\}) = \frac{8}{10}$

Probability and Relative Frequency

- Probability p: Theoretical concept, idealization, expectation
- Relative Frequency f: Concrete measure
 - Normalised number of *observed* events

Example

After 10 cards (with returning and shuffling), the event \blacklozenge took place 8 times: $f(\{\diamondsuit\}) = \frac{8}{10}$

▶ For large numbers of drawings, relative frequency approximates the probability
 ▶ lim_∞ f = p

Probability and Relative Frequency

- Probability p: Theoretical concept, idealization, expectation
- Relative Frequency f: Concrete measure
 - Normalised number of *observed* events

Example

After 10 cards (with returning and shuffling), the event \blacklozenge took place 8 times: $f(\{\diamondsuit\}) = \frac{8}{10}$

- > For large numbers of drawings, relative frequency approximates the probability
 - $\blacktriangleright \quad \lim_{\infty} f = p$
- ▶ In practice, we will often use determine probabilities by counting relative frequencies
 - Assumption: Frequency is measured on representative and large data set

Independent Events

Joint Probability

- We are often interested in multiple events (and their relation)
- \blacktriangleright E: We draw 8 \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is 8 \heartsuit
 - E_2 : Second card is 8 \heartsuit

▶
$$p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$$

Independent Events

Joint Probability

- We are often interested in multiple events (and their relation)
- \blacktriangleright E: We draw 8 \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is 8 \heartsuit
 - E_2 : Second card is 8 \heartsuit
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$
- \blacktriangleright E: We draw \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is $X\heartsuit$
 - E_2 : Second card is $X\heartsuit$
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{4} * \frac{1}{4} = 0.0625$

Independent Events

Joint Probability

- ▶ We are often interested in multiple events (and their relation)
- \blacktriangleright E: We draw 8 \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is 8 \heartsuit
 - E_2 : Second card is 8 \heartsuit
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$
- E: We draw \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is $X\heartsuit$
 - \blacktriangleright E_2 : Second card is $X\heartsuit$
 - ▶ $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{4} * \frac{1}{4} = 0.0625$
- These events are independent
 - because we return and re-shuffle the cards all the time
 - \blacktriangleright Drawing $8\heartsuit$ the first time has no influence on the second drawing
 - Default case with dice

Conditional Probability

- We no longer return the card
- E: We draw $8\heartsuit$ two times in a row
 - E_1 : First card is 8 \heartsuit
 - \blacktriangleright E_2 : Second card is 8 \heartsuit
 - $p(E_1, E_2) = p(E_1) * p(E_2)$
 - This no longer works, because the events are not independent
 - Obvious: Only one $8\heartsuit$ in the game, and $p(E_2)$ has to express that it might be gone

Conditional Probability

- We no longer return the card
- E: We draw $8\heartsuit$ two times in a row
 - E_1 : First card is 8 \heartsuit
 - \blacktriangleright E_2 : Second card is 8 \heartsuit
 - $p(E_1, E_2) = p(E_1) * p(E_2)$
 - This no longer works, because the events are not independent
 - Obvious: Only one $8\heartsuit$ in the game, and $p(E_2)$ has to express that it might be gone
 - This is done with the notion of conditional probability
 - $p(E_1, E_2) = p(E_1) * p(E_2|E_1)$
 - ▶ $p(E_2|E_1) = 0$, therefore p(E) = 0

Conditional Probability

A less obvious example:

- We draw two cards in a row
- \blacktriangleright E_{\heartsuit} : Card is $X\heartsuit$
- \blacktriangleright E_{\diamondsuit} : Card is $X\diamondsuit$

Conditional Probability

A less obvious example:

- We draw two cards in a row
- \blacktriangleright E_{\heartsuit} : Card is $X\heartsuit$
- \blacktriangleright E_{\diamondsuit} : Card is $X\diamondsuit$

$$p(E_{\heartsuit}, E_{\heartsuit}) = p(E_{\heartsuit}) * p(E_{\heartsuit}|E_{\heartsuit})$$

_

Conditional Probability

A less obvious example:

- We draw two cards in a row
- \blacktriangleright E_{\heartsuit} : Card is $X\heartsuit$
- \blacktriangleright E_{\diamondsuit} : Card is $X\diamondsuit$

$$p(E_{\heartsuit}, E_{\heartsuit}) = p(E_{\heartsuit}) * p(E_{\heartsuit}|E_{\heartsuit})$$
$$= \frac{8}{32} *$$

Conditional Probability

A less obvious example:

- We draw two cards in a row
- \blacktriangleright E_{\heartsuit} : Card is $X\heartsuit$
- \blacktriangleright E_{\diamondsuit} : Card is $X\diamondsuit$

$$p(E_{\heartsuit}, E_{\heartsuit}) = p(E_{\heartsuit}) * p(E_{\heartsuit}|E_{\heartsuit})$$
$$= \frac{8}{32} * \frac{7}{31} = 0.056$$

Conditional Probability

A less obvious example:

- We draw two cards in a row
- \blacktriangleright E_{\heartsuit} : Card is $X\heartsuit$
- \blacktriangleright E_{\diamondsuit} : Card is $X\diamondsuit$

$$p(E_{\heartsuit}, E_{\heartsuit}) = p(E_{\heartsuit}) * p(E_{\heartsuit}|E_{\heartsuit})$$
$$= \frac{8}{32} * \frac{7}{31} = 0.056$$
$$p(E_{\diamondsuit}, E_{\heartsuit}) = p(E_{\diamondsuit}) * p(E_{\heartsuit}|E_{\diamondsuit})$$

=

Conditional Probability

A less obvious example:

- We draw two cards in a row
- \blacktriangleright E_{\heartsuit} : Card is $X\heartsuit$
- \blacktriangleright E_{\diamondsuit} : Card is $X\diamondsuit$

$$p(E_{\heartsuit}, E_{\heartsuit}) = p(E_{\heartsuit}) * p(E_{\heartsuit}|E_{\heartsuit})$$
$$= \frac{8}{32} * \frac{7}{31} = 0.056$$
$$p(E_{\diamondsuit}, E_{\heartsuit}) = p(E_{\diamondsuit}) * p(E_{\heartsuit}|E_{\diamondsuit})$$
$$= \frac{8}{32} * \frac{8}{31} = 0.064$$

Another Example

- Setup: We make a survey in a street in Cologne
- We count four types of events in two random variables:
 - Person has brown hair (H = B)
 - Person has red hair (H = R)
 - Person likes to wake up late (W = L)
 - Person likes to wake up early (W = E)

Another Example

- Setup: We make a survey in a street in Cologne
- We count four types of events in two random variables:
 - Person has brown hair (H = B)
 - Person has red hair (H = R)
 - ▶ Person likes to wake up late (W = L)
 - Person likes to wake up early (W = E)
- ▶ Assumption: B / R and L / E are mutually exclusive
 - I.e., a single person cannot have red and brown hair
- ► A single person can be encoded with two symbols (e.g., »BL«)
 - ▲ But this combination is not unique in contrast to the cards example
- All following numbers are made up

Example

Relation between hair color H and preferred wake-up time W

$\downarrow W \; / \; H \rightarrow $	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

Example

Relation between hair color ${\cal H}$ and preferred wake-up time ${\it W}$

$\downarrow W \; / \; H \rightarrow $	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

If we pick a random person, what's the probability that this person has brown hair?

p(H = brown) =

Example

Relation between hair color H and preferred wake-up time W

$\downarrow ~W ~/~ H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

If we pick a random person, what's the probability that this person has brown hair?

$$p(H = brown) = \frac{50}{65}$$

Example

Relation between hair color H and preferred wake-up time W

$\downarrow ~W ~/~ H \rightarrow$	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

$$\begin{array}{ll} p(H=\operatorname{brown})=\frac{50}{65} & p(H=\operatorname{red})=\frac{15}{65} \\ p(W=\operatorname{early})=\frac{30}{65} & p(W=\operatorname{late})=\frac{35}{65} \end{array} \right\} \text{sums per row or column}$$

Example

Relation between hair color H and preferred wake-up time W

$\downarrow W \; / \; H \rightarrow $	brown	red	sum
early late	20 <mark>30</mark>	10 5	30 35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

▶ Joint probability: $p(W = \text{late}, H = \text{brown}) = \frac{30}{65}$

Probability that someone has brown hair and prefers to wake up late

Denominator: Number of all items

Example

Relation between hair color H and preferred wake-up time W

$\downarrow ~W ~/~ H \rightarrow$	brown	red	sum
early late	20 <mark>30</mark>	10 5	30 35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

- ▶ Joint probability: $p(W = \text{late}, H = \text{brown}) = \frac{30}{65}$
 - Probability that someone has brown hair and prefers to wake up late
 - Denominator: Number of all items
- Conditional probability: $p(W = \text{late}|H = \text{brown}) = \frac{30}{50}$
 - Probability that one of the brown-haired participants prefers to wake up late
 - Denominator: Number of remaining items (after conditioned event has happened)

Lecture 6

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

$$p(A|B) = \frac{p(A,B)}{p(B)}$$
 definition of conditional probabilities

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

$$p(A|B) = \frac{p(A,B)}{p(B)} \quad \text{definition of conditional probabilities}$$

$$p(W = \text{late}|H = \text{brown}) = \frac{30}{50} = 0.6 \quad \text{intuition from previous slide}$$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

$$\begin{split} p(A|B) &= \frac{p(A,B)}{p(B)} & \text{definition of conditional probabilities} \\ p(W = \mathsf{late}|H = \mathsf{brown}) &= \frac{30}{50} = 0.6 & \text{intuition from previous slide} \\ &= \frac{p(W = \mathsf{late}, H = \mathsf{brown})}{p(H = \mathsf{brown})} & \text{by applying definition} \end{split}$$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W=e) = 0.46 p(W=l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

$$\begin{split} p(A|B) &= \frac{p(A,B)}{p(B)} & \text{definition of conditional probabilities} \\ p(W = |\text{ate}|H = \text{brown}) &= \frac{30}{50} = 0.6 & \text{intuition from previous slide} \\ &= \frac{p(W = |\text{ate}, H = \text{brown})}{p(H = \text{brown})} & \text{by applying definition} \\ &= \frac{0.46}{0.77} \underset{\text{Lecture 6}}{=} 0.6 \end{split}$$

Section 2

Naive Bayes Algorithm

Naive Bayes

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)
- Reading

Jurafsky/Martin (2023, Chapter 4)

Two Parts

- Prediction model: How does the model make predictions on new instances?
- Learning algorithm: How is the model created based on annotated data?

Idea: We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

Idea: We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

- $f_n(x)$: Value of feature *n* for instance *x*
- \blacktriangleright argmax_i e: Select the argument i that maximizes the expression e

Naive Bayesdef argmax(SET, EXP):Prediction Modelarg = 0Idea: We calculate the probability for each possible class c, given the titem x, and we assign most probably classfor each i in SET:val = EXP(i)if val > max:arg = imax = valreturn argreturn arg

Lecture 6

- $f_n(x)$: Value of feature *n* for instance *x*
- $\operatorname{argmax}_i e$: Select the argument *i* that maximizes the expression *e*

Naive Bayesdef argmax(SET, EXP):Prediction Modelarg = 0Idea: We calculate the probability for each possible class c, given the fitem x, and we assign most probably classfor each i in SET:val = EXP(i)if val > max:arg = imax = valreturn argreturn arg

- $f_n(x)$: Value of feature *n* for instance *x*
- $\operatorname{argmax}_i e$: Select the argument *i* that maximizes the expression e

$$prediction(x) = \operatorname*{argmax}_{c \in C} p(c|f_1(x), f_2(x), \dots, f_n(x))$$

- $f_n(x)$: Value of feature *n* for instance *x*
- $\operatorname{argmax}_i e$: Select the argument i that maximizes the expression e

$$prediction(x) = \operatorname*{argmax}_{c \in C} p(c|f_1(x), f_2(x), \dots, f_n(x))$$

How do we calculate $p(c|f_1(x), f_2(x), \ldots, f_n(x))$?

Definition of conditional probabilities

 $p(c|f_1,\ldots,f_n) =$

$$p(c|f_1, \dots, f_n) = \frac{p(c, f_1, f_2, \dots, f_n)}{p(f_1, f_2, \dots, f_n)}$$

$$p(c|f_1, \dots, f_n) = \frac{p(c, f_1, f_2, \dots, f_n)}{p(f_1, f_2, \dots, f_n)} = \frac{p(f_1, f_2, \dots, f_n, c)}{p(f_1, f_2, \dots, f_n)}$$

$$p(c|f_1, \dots, f_n) = \frac{p(c, f_1, f_2, \dots, f_n)}{p(f_1, f_2, \dots, f_n)} = \frac{p(f_1, f_2, \dots, f_n, c)}{p(f_1, f_2, \dots, f_n)}$$
$$= \frac{\frac{p(f_1|f_2, \dots, f_n, c) \times p(f_2|f_3, \dots, f_n, c) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

$$p(c|f_1, \dots, f_n) = \frac{p(c, f_1, f_2, \dots, f_n)}{p(f_1, f_2, \dots, f_n)} = \frac{p(f_1, f_2, \dots, f_n, c)}{p(f_1, f_2, \dots, f_n)}$$
$$= \frac{\text{Chain rule}}{p(f_1|f_2, \dots, f_n, c) \times p(f_2|f_3, \dots, f_n, c) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

Now we – naively – assume feature independence
=
$$\frac{p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

$$p(c|f_1, \dots, f_n) = \frac{p(f_1|c) \times p(f_2|t) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

$$p(c|f_1, \dots, f_n) = \frac{P(f_1|c) \times p(f_2|t) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

 $\begin{array}{lll} {\rm Skip \ denominator, \ because \ it's \ constant^*} \\ {\rm prediction}(x) & = & \mathop{\rm argmax}_{c \in C} p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c) \end{array}$

* This is a hack: The largest number in $\langle 2,6,3\rangle$ is the second. This doesn't change when we divide every number by the same (constant) number. The largest of $\langle 1,3,1.5\rangle$ is the second, and the largest of $\langle 0.2,0.6,0.3\rangle$ is also the second. It's not a mistake to apply the denominator, but it's also not necessary.

 $p(c|f_1, \dots, f_n) = \frac{p(f_1|c) \times p(f_2|t) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$

Skip denominator, because it's constant* prediction(x) = $\underset{c \in C}{\operatorname{argmax}} p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)$

* This is a hack: The largest number in $\langle 2,6,3\rangle$ is the second. This doesn't change when we divide every number by the same (constant) number. The largest of $\langle 1,3,1.5\rangle$ is the second, and the largest of $\langle 0.2,0.6,0.3\rangle$ is also the second. It's not a mistake to apply the denominator, but it's also not necessary.

 $p(c|f_1, \dots, f_n) = \frac{From \text{ previous slide}}{p(f_1|c) \times p(f_2|t) \times \dots \times p(c)}$

Skip denominator, because it's constant* prediction(x) = $\underset{c \in C}{\operatorname{argmax}} p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)$

Where do we get $p(f_i(x)|c)$? – Training!

Naive Bayes Learning Algorithm

- 1. For each feature $f_i \in F$
 - Count frequency tables from the training set:

		C (classes)					
		c_1 c_2 c_m					
	a	3	2				
$v(f_i)$	b	5	7				
	c	0	1				
	\sum	8	10				

- 2. Calculate conditional probabilities
 - Divide each number by the sum of the entire column

• E.g.,
$$p(a|c_1) = \frac{3}{3+5+0}$$
 $p(b|c_2) = \frac{7}{2+7+1}$

Section 3

Example: Spam Classification

Training

- > Data set: 100 e-mails, manually classified as spam or not spam (50/50)
 - $\blacktriangleright Classes C = \{true, false\}$
- Features: Presence of each of these tokens (manually selected): >casino<, >enlargement<, >meeting<, >profit<, >super<, >text<, >xxx
 - »Bag of Words« representation

		C					C		
		true	false	_			true	false	
_	1	45	25	-		1	15	35	••••
sinc	0	5	25		ext	0	35	15	
ca	\sum	50	50	-	Ţ	\sum	50	50	

Table: Extracted frequencies for features >casino(and >text(

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

	(casino	0	$ \rangle$
		enlargement	0	
		meeting	1	
p	true	profit	0	
		super	0	
		text	1	
		xxx	1)/

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

	/	casino	0] \		p(asino = 0 true)	\times
		enlargement	0		p(enlargement = 0 true)	\times
		meeting	1		p(meeting = 1 true)	\times
p	true	profit	0	\propto	p(profit = 0 true)	\times
		super	0		p(super = 0 true)	\times
		text	1		p(text = 1 true)	\times
		xxx	1]/		$p(\mathbf{x}\mathbf{x}\mathbf{x}=1 \mathbf{t}\mathbf{r}\mathbf{u}\mathbf{e})$	

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

p	true	casino enlargement meeting profit super text xxx	$ \begin{array}{c c} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \end{array} $	\propto	p(casino = 0 true) $p(enlargement = 0 true)$ $p(meeting = 1 true)$ $p(profit = 0 true)$ $p(super = 0 true)$ $p(text = 1 true)$ $p(xxx = 1 true)$	× × × × ×
	× 11	-	/ L	=	$\cdots \times \frac{5}{50} \times \cdots \times \frac{15}{50} \times \cdots =$	=

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

3. Assign the class with the higher probability

Danger

		C		
		true	false	
ove	1	0	35	
	0	50	15	
9	\sum	50	50	

What happens in this situation to the prediction?

Danger

		C		
		true	false	
	1	0	35	
ove	0	50	15	
9	\sum	50	50	

- What happens in this situation to the prediction?
- At some point, we need to multiply with p(love = 1 | true) = 0
- ▶ This leads to a total probability of zero (for this class), irrespective of the other features
 - Even if another feature would be a perfect predictor!
- $\rightarrow \ {\sf Smoothing}$

Smoothing

- Whenever multiplication is involved, zeros are dangerous
- Smoothing is used to avoid zeros
- Different possibilities
- Simple: Add something to the probabilities
 - $\blacktriangleright \frac{x_i+1}{N+1}$
 - This leads to values slightly above zero
- Theoretical justification: Some of the probability space is left unused, for events (= words) that we haven't seen yet

References I

Jurafsky, Dan/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of Janaury 7, 2023. Prentice Hall. URL: https://web.stanford.edu/~jurafsky/slp3/.