
Recap: Decision Tree, Problem Gambling

▶ Decision tree
▶ Classification method
▶ Transparent for humans (for limited number of features)
▶ Core idea:

▶ Repeatedly split the data set using features, until sub sets are »pure«
▶ Split according to information gain of the features

▶ Problem Gambling
▶ Text classification problem
▶ Non-linguistic use-case, with criteria grounded in medicinal diagnostics
▶ BERT: First »large language model«
▶ Pre-training / fine-tuning paradigm
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Wahlen zum Europäischen Parlament

▶ Sonntag, 9. Juni, 9:00-18:00 Uhr
▶ 96 Abgeordnete aus Deutschland
▶ Listenwahl (d.h. Parteien)

▶ Relevant für uns, weil (praktisch alle) IT-Themen EU-Themen sind
▶ Künstliche Intelligenz
▶ Digitale Märkten
▶ Chatkontrolle
▶ Datenschutzgrundverordnung
▶ Und natürlich: Klimakrise
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Naive Bayes
Sprachverarbeitung (VL + Ü)

Nils Reiter

June 6, 2024



Introduction and Overview

▶ Second machine learning method (after decision trees)
▶ Probabilistic method (i.e., probabilities are involved)
▶ Feature-based method

Basic Probability Theory

Naive Bayes Algorithm

Example: Spam Classification
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Section 1

Basic Probability Theory



Basic Probability Theory

Example: Cards

▶ 32 cards Ω (sample space)
▶ 4 ›colors‹: C = {♣,♠,♢,♡}
▶ 8 values: V = {7, 8, 9, 10, J,Q,K,A}
▶ Individual cards (›outcomes‹) are denoted with value and color: 8♡
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Basic Probability Theory

Basics
Events

▶ Generally, we draw cards from a (well shuffled) deck
▶ We define what events we are interested in
▶ An event can be any subset of the sample space Ω

▶ Events will be denoted with E

Examples
▶ »We draw a heart eight« – E = {8♡}
▶ »We draw card with a diamond« – E = {7♢, 8♢, 9♢, 10♢, J♢,Q♢,K♢,A♢}
▶ »We draw a queen« – E = {Q♣,Q♠,Q♢,Q♡}
▶ »We draw a heart eight or diamond 10« – E = {8♡, 10♢}
▶ »We draw any card« – E = Ω
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Basic Probability Theory

Basics
Probabilities

▶ Probability p(E): Ratio of size of E to size of Ω (Laplace)
▶ 0 ≤ p ≤ 1
▶ p(E) = 0: Impossible event p(E) = 1: Certain event
▶ p(E) = 0.000001: Very unlikely event

Example
▶ If all outcomes are equally likely: p(E) = |E|

|Ω|

▶ p({8♡}) = 1
32

▶ p({9♣, 9♠, 9♢, 9♡}) = 4
32

▶ p(Ω) = 1 (must happen, certain event)
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Basic Probability Theory

Basics
Probability and Relative Frequency

▶ Probability p: Theoretical concept, idealization, expectation
▶ Relative Frequency f: Concrete measure

▶ Normalised number of observed events

Example
After 10 cards (with returning and shuffling), the event ♠ took place 8 times: f({♠}) = 8

10

▶ For large numbers of drawings, relative frequency approximates the probability
▶ lim∞ f = p

▶ In practice, we will often use determine probabilities by counting relative frequencies
▶ Assumption: Frequency is measured on representative and large data set
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Basic Probability Theory

Independent Events
Joint Probability

▶ We are often interested in multiple events (and their relation)
▶ E: We draw 8♡ two times in a row (putting the first card back)

▶ E1: First card is 8♡
▶ E2: Second card is 8♡
▶ p(E) = p(E1,E2) = p(E1) ∗ p(E2) =

1
32 ∗ 1

32 = 0.0156

▶ E: We draw ♡ two times in a row (putting the first card back)
▶ E1: First card is X♡
▶ E2: Second card is X♡
▶ p(E) = p(E1,E2) = p(E1) ∗ p(E2) =

1
4 ∗ 1

4 = 0.0625

▶ These events are independent
▶ because we return and re-shuffle the cards all the time
▶ Drawing 8♡ the first time has no influence on the second drawing
▶ Default case with dice

Lecture 6 10 / 27



Basic Probability Theory

Independent Events
Joint Probability

▶ We are often interested in multiple events (and their relation)
▶ E: We draw 8♡ two times in a row (putting the first card back)

▶ E1: First card is 8♡
▶ E2: Second card is 8♡
▶ p(E) = p(E1,E2) = p(E1) ∗ p(E2) =

1
32 ∗ 1

32 = 0.0156

▶ E: We draw ♡ two times in a row (putting the first card back)
▶ E1: First card is X♡
▶ E2: Second card is X♡
▶ p(E) = p(E1,E2) = p(E1) ∗ p(E2) =

1
4 ∗ 1

4 = 0.0625

▶ These events are independent
▶ because we return and re-shuffle the cards all the time
▶ Drawing 8♡ the first time has no influence on the second drawing
▶ Default case with dice

Lecture 6 10 / 27



Basic Probability Theory

Independent Events
Joint Probability

▶ We are often interested in multiple events (and their relation)
▶ E: We draw 8♡ two times in a row (putting the first card back)

▶ E1: First card is 8♡
▶ E2: Second card is 8♡
▶ p(E) = p(E1,E2) = p(E1) ∗ p(E2) =

1
32 ∗ 1

32 = 0.0156

▶ E: We draw ♡ two times in a row (putting the first card back)
▶ E1: First card is X♡
▶ E2: Second card is X♡
▶ p(E) = p(E1,E2) = p(E1) ∗ p(E2) =

1
4 ∗ 1

4 = 0.0625

▶ These events are independent
▶ because we return and re-shuffle the cards all the time
▶ Drawing 8♡ the first time has no influence on the second drawing
▶ Default case with dice

Lecture 6 10 / 27



Basic Probability Theory

Dependent Events
Conditional Probability

▶ We no longer return the card
▶ E: We draw 8♡ two times in a row

▶ E1: First card is 8♡
▶ E2: Second card is 8♡
▶ p(E1,E2) = p(E1) ∗ p(E2)
▶ This no longer works, because the events are not independent

▶ Obvious: Only one 8♡ in the game, and p(E2) has to express that it might be gone

▶ This is done with the notion of conditional probability
▶ p(E1,E2) = p(E1) ∗ p(E2|E1)

▶ p(E2|E1) = 0, therefore p(E) = 0
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Basic Probability Theory

Dependent Events
Conditional Probability
A less obvious example:
▶ We draw two cards in a row
▶ E♡: Card is X♡
▶ E♢: Card is X♢

p(E♡,E♡) = p(E♡) ∗ p(E♡|E♡)

=
8

32
∗ 7

31
= 0.056

p(E♢,E♡) = p(E♢) ∗ p(E♡|E♢)

=
8

32
∗ 8

31
= 0.064
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Basic Probability Theory

Conditional and Joint Probabilities
Another Example

▶ Setup: We make a survey in a street in Cologne
▶ We count four types of events in two random variables:

▶ Person has brown hair (H = B)
▶ Person has red hair (H = R)
▶ Person likes to wake up late (W = L)
▶ Person likes to wake up early (W = E)

▶ Assumption: B / R and L / E are mutually exclusive
▶ I.e., a single person cannot have red and brown hair

▶ A single person can be encoded with two symbols (e.g., »BL«)
 But this combination is not unique – in contrast to the cards example

▶ All following numbers are made up
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Basic Probability Theory

Conditional and Joint Probabilities
Example

Relation between hair color H and preferred wake-up time W

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Survey Results, Ω: Group of questioned people
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Basic Probability Theory

Conditional and Joint Probabilities
Example

Relation between hair color H and preferred wake-up time W

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Survey Results, Ω: Group of questioned people

p(H = brown) = 50
65 p(H = red) = 15

65
p(W = early) = 30

65 p(W = late) = 35
65

}
sums per row or column
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Basic Probability Theory

Conditional and Joint Probabilities
Example
Relation between hair color H and preferred wake-up time W

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Survey Results, Ω: Group of questioned people

▶ Joint probability: p(W = late,H = brown) = 30
65

▶ Probability that someone has brown hair and prefers to wake up late
▶ Denominator: Number of all items

▶ Conditional probability: p(W = late|H = brown) = 30
50

▶ Probability that one of the brown-haired participants prefers to wake up late
▶ Denominator: Number of remaining items (after conditioned event has happened)
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Basic Probability Theory

Conditional and Joint Probabilities
Example

brown red margin

early p(W = e,H = b) = 0.31 p(W = e,H = r) = 0.15 p(W = e) = 0.46
late p(W = l,H = b) = 0.46 p(W = l,H = r) = 0.08 p(W = l) = 0.54

margin p(H = b) = 0.77 p(H = r) = 0.23 p(Ω) = 1

Table: (Joint) Probabilities, derived by dividing everything by |Ω| = 65

p(A|B) =
p(A,B)

p(B)
definition of conditional probabilities

p(W = late|H = brown) =
30

50
= 0.6 intuition from previous slide

=
p(W = late,H = brown)

p(H = brown) by applying definition

=
0.46

0.77
= 0.6
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Section 2

Naive Bayes Algorithm



Naive Bayes Algorithm

Naive Bayes

▶ Probabilistic model (i.e., takes probabilities into account)
▶ Probabilities are estimated on training data (relative frequencies)
▶ Reading Jurafsky/Martin (2023, Chapter 4)

Two Parts
▶ Prediction model: How does the model make predictions on new instances?
▶ Learning algorithm: How is the model created based on annotated data?
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

Idea: We calculate the probability for each possible class c, given the feature values of the
item x, and we assign most probably class

▶ fn(x): Value of feature n for instance x
▶ argmaxi e: Select the argument i that maximizes the expression e

def argmax(SET, EXP):
arg = 0
max = 0
foreach i in SET:

val = EXP(i)
if val > max:

arg = i
max = val

return arg

prediction(x) = argmax
c∈C

p(c|f1(x), f2(x), . . . , fn(x))

How do we calculate p(c|f1(x), f2(x), . . . , fn(x))?
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

Definition of conditional probabilities

p(c|f1, . . . , fn) =

p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

Chain rule

=
p(f1|f2, . . . , fn, c)× p(f2|f3, . . . , fn, c)× · · · × p(c)

p(f1, f2, . . . , fn)

Now we – naively – assume feature independence

=
p(f1|c)× p(f2|t)× · · · × p(c)

p(f1, f2, . . . , fn)
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

From previous slide

p(c|f1, . . . , fn) =
p(f1|c)× p(f2|t)× · · · × p(c)

p(f1, f2, . . . , fn)

Skip denominator, because it’s constant∗

prediction(x) = argmax
c∈C

p(f1(x)|c)× p(f2(x)|c)× · · · × p(c)

∗ This is a hack: The largest number in ⟨2, 6, 3⟩
is the second. This doesn’t change when we divide
every number by the same (constant) number. The
largest of ⟨1, 3, 1.5⟩ is the second, and the largest
of ⟨0.2, 0.6, 0.3⟩ is also the second.
It’s not a mistake to apply the denominator, but it’s
also not necessary.

Where do we get p(fi(x)|c)? – Training!
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Naive Bayes Algorithm

Naive Bayes
Learning Algorithm

1. For each feature fi ∈ F
▶ Count frequency tables from the training set:

C (classes)
c1 c2 … cm

v(fi)

a 3 2 …
b 5 7 …
c 0 1 …∑

8 10
2. Calculate conditional probabilities

▶ Divide each number by the sum of the entire column
▶ E.g., p(a|c1) = 3

3+5+0
p(b|c2) = 7

2+7+1
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Section 3

Example: Spam Classification



Example: Spam Classification

Training
▶ Data set: 100 e-mails, manually classified as spam or not spam (50/50)

▶ Classes C = {true, false}
▶ Features: Presence of each of these tokens (manually selected): ›casino‹, ›enlargement‹,

›meeting‹, ›profit‹, ›super‹, ›text‹, ›xxx‹
▶ »Bag of Words« representation

C
true false

ca
sin

o 1 45 25
0 5 25∑

50 50

C
true false

te
xt

1 15 35
0 35 15∑

50 50

…

Table: Extracted frequencies for features ›casino‹ and ›text‹
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Example: Spam Classification

Prediction
1. Extract word presence information from new text
2. Calculate the probability for each possible class

p


true

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



casino 0
enlargement 0
meeting 1
profit 0
super 0
text 1
xxx 1





∝

p(casino = 0|true) ×
p(enlargement = 0|true) ×
p(meeting = 1|true) ×
p(profit = 0|true) ×
p(super = 0|true) ×
p(text = 1|true) ×
p(xxx = 1|true)

= · · · × 5

50
× · · · × 15

50
× · · · = . . .

p
(

false
∣∣∣∣∣
[

casino 0
...

...

])
∝ . . .

3. Assign the class with the higher probability
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Example: Spam Classification

Danger

C
true false

lo
ve

1 0 35
0 50 15∑

50 50

▶ What happens in this situation to the prediction?

▶ At some point, we need to multiply with p(love = 1|true) = 0

▶ This leads to a total probability of zero (for this class), irrespective of the other features
▶ Even if another feature would be a perfect predictor!

→ Smoothing
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Example: Spam Classification

Smoothing

▶ Whenever multiplication is involved, zeros are dangerous
▶ Smoothing is used to avoid zeros
▶ Different possibilities
▶ Simple: Add something to the probabilities

▶ xi+1
N+1▶ This leads to values slightly above zero

▶ Theoretical justification: Some of the probability space is left unused, for events (=
words) that we haven’t seen yet
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Example: Spam Classification

References I
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