Recap: Decision Tree, Problem Gambling

- Decision tree
- Classification method
- Transparent for humans (for limited number of features)
- Core idea:
- Repeatedly split the data set using features, until sub sets are »pure«
- Split according to information gain of the features
- Problem Gambling
- Text classification problem
- Non-linguistic use-case, with criteria grounded in medicinal diagnostics
- BERT: First »large language model«
- Pre-training / fine-tuning paradigm

Wahlen zum Europäischen Parlament

\downarrow Sonntag, 9. Juni, 9:00-18:00 Uhr

- 96 Abgeordnete aus Deutschland
- Listenwahl (d.h. Parteien)
- Relevant für uns, weil (praktisch alle) IT-Themen EU-Themen sind
- Künstliche Intelligenz
- Digitale Märkten
- Chatkontrolle
- Datenschutzgrundverordnung
- Und natürlich: Klimakrise

Naive Bayes
 Sprachverarbeitung (VL + Ü)

Nils Reiter

June 6, 2024

Introduction and Overview

- Second machine learning method (after decision trees)
- Probabilistic method (i.e., probabilities are involved)
- Feature-based method

Basic Probability Theory

Naive Bayes Algorithm

Example: Spam Classification

Section 1

Basic Probability Theory

Example：Cards

－ 32 cards Ω（sample space）
－ 4 icolors：$C=\{\boldsymbol{\phi}, \boldsymbol{巾}, \diamond, \vee\}$
－ 8 values：$V=\{7,8,9,10, J, Q, K, A\}$
－Individual cards（っoutcomesヶ）are denoted with value and color： 80

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- Events will be denoted with E

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- Events will be denoted with E

Examples

- "We draw a heart eight« $-E=\{8 \circlearrowright\}$

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- Events will be denoted with E

Examples

- "We draw a heart eight« $-E=\{80\}$
- „We draw card with a diamond"

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- Events will be denoted with E

Examples

- "We draw a heart eight» $-E=\{80\}$
- »We draw card with a diamond« $-E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- Events will be denoted with E

Examples

- "We draw a heart eight» $-E=\{80\}$
- »We draw card with a diamond« $-E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- „We draw a queen«

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- Events will be denoted with E

Examples

- "We draw a heart eight» $-E=\{80\}$
- »We draw card with a diamond« $-E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- »We draw a queen«-E=\{Q\&,Qゅ,Q厄,Qऽ\}

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- Events will be denoted with E

Examples

- "We draw a heart eight» $-E=\{80\}$
- »We draw card with a diamond« $-E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- »We draw a queen $«-E=\{Q \&, Q \wedge, Q \diamond, Q \bigcirc\}$
- „We draw a heart eight or diamond 10 «

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- Events will be denoted with E

Examples

- "We draw a heart eight» $-E=\{80\}$
- »We draw card with a diamond« $-E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- »We draw a queen « - $E=\{Q \&, Q \wedge, Q \diamond, Q \circlearrowleft\}$
- »We draw a heart eight or diamond $10 «-E=\{80,10 \diamond\}$
- »We draw any card«

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- Events will be denoted with E

Examples

- "We draw a heart eight« $-E=\{8 \varnothing\}$
- »We draw card with a diamond« $-E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- »We draw a queen « - $E=\{Q \&, Q \wedge, Q \diamond, Q \circlearrowleft\}$
- »We draw a heart eight or diamond $10 «-E=\{80,10 \diamond\}$
- »We draw any card« $-E=\Omega$

Basics

Probabilities

- Probability $p(E)$: Ratio of size of E to size of Ω (Laplace)
- $0 \leq p \leq 1$
- $p(E)=0$: Impossible event $\quad p(E)=1$: Certain event
- $p(E)=0.000001$: Very unlikely event

Basics

Probabilities

- Probability $p(E)$: Ratio of size of E to size of Ω (Laplace)
- $0 \leq p \leq 1$
- $p(E)=0$: Impossible event $\quad p(E)=1$: Certain event
- $p(E)=0.000001$: Very unlikely event

Example

- If all outcomes are equally likely: $p(E)=\frac{|E|}{|\Omega|}$
- $p(\{80\})=\frac{1}{32}$
- $p(\{9 \boldsymbol{\$}, 9 \boldsymbol{\wedge}, 9 \diamond, 9 \diamond\})=\frac{4}{32}$
- $p(\Omega)=1$ (must happen, certain event)

Basics

Probability and Relative Frequency

- Probability p : Theoretical concept, idealization, expectation
- Relative Frequency f : Concrete measure
- Normalised number of observed events

Example

After 10 cards (with returning and shuffling), the event took place 8 times: $f(\{\boldsymbol{\phi}\})=\frac{8}{10}$

Basics

Probability and Relative Frequency

- Probability p : Theoretical concept, idealization, expectation
- Relative Frequency f : Concrete measure
- Normalised number of observed events

Example

After 10 cards (with returning and shuffling), the event took place 8 times: $f(\{\boldsymbol{\phi}\})=\frac{8}{10}$

- For large numbers of drawings, relative frequency approximates the probability
- $\lim _{\infty} f=p$

Basics

Probability and Relative Frequency

- Probability p : Theoretical concept, idealization, expectation
- Relative Frequency f : Concrete measure
- Normalised number of observed events

Example

After 10 cards (with returning and shuffling), the event took place 8 times: $f(\{\boldsymbol{\phi}\})=\frac{8}{10}$

- For large numbers of drawings, relative frequency approximates the probability
- $\lim _{\infty} f=p$
- In practice, we will often use determine probabilities by counting relative frequencies
- Assumption: Frequency is measured on representative and large data set

Independent Events

Joint Probability

- We are often interested in multiple events (and their relation)
- E: We draw $8 \bigcirc$ two times in a row (putting the first card back)
- E_{1} : First card is 80
- E_{2} : Second card is 80
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{32} * \frac{1}{32}=0.0156$

Independent Events

Joint Probability

- We are often interested in multiple events (and their relation)
- E: We draw 80 two times in a row (putting the first card back)
- E_{1} : First card is 80
- E_{2} : Second card is 80
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{32} * \frac{1}{32}=0.0156$
- E: We draw \bigcirc two times in a row (putting the first card back)
- E_{1} : First card is $X \bigcirc$
- E_{2} : Second card is $X \mathrm{~S}$
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{4} * \frac{1}{4}=0.0625$

Independent Events

Joint Probability

- We are often interested in multiple events (and their relation)
- E: We draw 80 two times in a row (putting the first card back)
- E_{1} : First card is 80
- E_{2} : Second card is 80
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{32} * \frac{1}{32}=0.0156$
- E : We draw \triangle two times in a row (putting the first card back)
- E_{1} : First card is $X \bigcirc$
- E_{2} : Second card is $X \bigcirc$
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{4} * \frac{1}{4}=0.0625$
- These events are independent
- because we return and re-shuffle the cards all the time
- Drawing 80 the first time has no influence on the second drawing
- Default case with dice

Dependent Events

Conditional Probability

- We no longer return the card
- E: We draw 80 two times in a row
- E_{1} : First card is 80
- E_{2} : Second card is 80
- $p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)$
- This no longer works, because the events are not independent
- Obvious: Only one 80 in the game, and $p\left(E_{2}\right)$ has to express that it might be gone

Dependent Events

Conditional Probability

- We no longer return the card
- E: We draw 80 two times in a row
- E_{1} : First card is 80
- E_{2} : Second card is 80
- $p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)$
- This no longer works, because the events are not independent
- Obvious: Only one 80 in the game, and $p\left(E_{2}\right)$ has to express that it might be gone
- This is done with the notion of conditional probability
- $p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2} \mid E_{1}\right)$
- $p\left(E_{2} \mid E_{1}\right)=0$, therefore $p(E)=0$

Dependent Events

Conditional Probability
A less obvious example:

- We draw two cards in a row
- E_{ϱ} : Card is $X \odot$
- $E_{\diamond}:$ Card is $X \diamond$

Dependent Events

Conditional Probability
A less obvious example:

- We draw two cards in a row
- E_{ϱ} : Card is $X \odot$
- $E_{\diamond}:$ Card is $X \diamond$

$$
\begin{aligned}
p\left(E_{\circlearrowleft}, E_{\circlearrowleft}\right) & =p\left(E_{\circlearrowleft}\right) * p\left(E_{\circlearrowleft} \mid E_{\circlearrowleft}\right) \\
& =
\end{aligned}
$$

Dependent Events

Conditional Probability
A less obvious example:

- We draw two cards in a row
- E_{ϱ} : Card is $X \odot$
- $E_{\diamond}:$ Card is $X \diamond$

$$
\begin{aligned}
p\left(E_{\circlearrowleft}, E_{\circlearrowleft}\right) & =p\left(E_{\circlearrowleft}\right) * p\left(E_{\circlearrowleft} \mid E_{\circlearrowleft}\right) \\
& =\frac{8}{32} *
\end{aligned}
$$

Dependent Events

Conditional Probability
A less obvious example:

- We draw two cards in a row
- E_{ϱ} : Card is $X \odot$
- $E_{\diamond}:$ Card is $X \diamond$

$$
\begin{aligned}
p\left(E_{\circlearrowleft}, E_{\circlearrowleft}\right) & =p\left(E_{\circlearrowleft}\right) * p\left(E_{\circlearrowleft} \mid E_{\circlearrowleft}\right) \\
& =\frac{8}{32} * \frac{7}{31}=0.056
\end{aligned}
$$

Dependent Events

Conditional Probability
A less obvious example:

- We draw two cards in a row
- E_{\bigcirc} : Card is $X \odot$
- $E_{\diamond}:$ Card is $X \diamond$

$$
\begin{aligned}
p\left(E_{\circlearrowleft}, E_{\circlearrowleft}\right) & =p\left(E_{\circlearrowleft}\right) * p\left(E_{\circlearrowleft} \mid E_{\circlearrowleft}\right) \\
& =\frac{8}{32} * \frac{7}{31}=0.056 \\
p\left(E_{\diamond}, E_{\circlearrowleft}\right) & =p\left(E_{\diamond}\right) * p\left(E_{\bigcirc} \mid E_{\diamond}\right) \\
& =
\end{aligned}
$$

Dependent Events

Conditional Probability
A less obvious example:

- We draw two cards in a row
- E_{\bigcirc} : Card is $X \odot$
- $E_{\diamond}:$ Card is $X \diamond$

$$
\begin{aligned}
p\left(E_{\circlearrowleft}, E_{\bigcirc}\right) & =p\left(E_{\circlearrowleft}\right) * p\left(E_{\circlearrowleft} \mid E_{\bigcirc}\right) \\
& =\frac{8}{32} * \frac{7}{31}=0.056 \\
p\left(E_{\diamond}, E_{\bigcirc}\right) & =p\left(E_{\diamond}\right) * p\left(E_{\bigcirc} \mid E_{\diamond}\right) \\
& =\frac{8}{32} * \frac{8}{31}=0.064
\end{aligned}
$$

Conditional and Joint Probabilities

Another Example

- Setup: We make a survey in a street in Cologne
- We count four types of events in two random variables:
- Person has brown hair $(H=B)$
- Person has red hair ($H=R$)
- Person likes to wake up late ($W=L$)
- Person likes to wake up early ($W=E$)

Conditional and Joint Probabilities

Another Example

- Setup: We make a survey in a street in Cologne
- We count four types of events in two random variables:
- Person has brown hair $(H=B)$
- Person has red hair ($H=R$)
- Person likes to wake up late ($W=L$)
- Person likes to wake up early ($W=E$)
- Assumption: B / R and L / E are mutually exclusive
- I.e., a single person cannot have red and brown hair
- A single person can be encoded with two symbols (e.g., »BL«)

A But this combination is not unique - in contrast to the cards example

- All following numbers are made up

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

Conditional and Joint Probabilities

Example
Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

If we pick a random person, what's the probability that this person has brown hair?

$$
p(H=\text { brown })=
$$

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

If we pick a random person, what's the probability that this person has brown hair?

$$
p(H=\text { brown })=\frac{50}{65}
$$

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

$$
\left.\left.\begin{array}{l}
p(H=\text { brown })=\frac{50}{65}
\end{array} \quad p(H=\text { red })=\frac{15}{65}, ~ s u m s ~ p e r ~ r o w ~ o r ~ c o l u m n ~ n ~ t h e ~ n a r l y ~\right) ~=\frac{30}{65} \quad p(W=\text { late })=\frac{35}{65}\right\} \text { sums }
$$

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

- Joint probability: $p(W=$ late, $H=$ brown $)=\frac{30}{65}$
- Probability that someone has brown hair and prefers to wake up late
- Denominator: Number of all items

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Survey Results, Ω : Group of questioned people

- Joint probability: $p(W=$ late, $H=$ brown $)=\frac{30}{65}$
- Probability that someone has brown hair and prefers to wake up late
- Denominator: Number of all items
- Conditional probability: $p(W=$ late $\mid H=$ brown $)=\frac{30}{50}$
- Probability that one of the brown-haired participants prefers to wake up late
- Denominator: Number of remaining items (after conditioned event has happened)

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|=65$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|=65$

$$
p(A \mid B)=\frac{p(A, B)}{p(B)} \quad \text { definition of conditional probabilities }
$$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|=65$

$$
\begin{aligned}
p(A \mid B) & =\frac{p(A, B)}{p(B)} \quad \text { definition of conditional probabilities } \\
p(W=\text { late } \mid H=\text { brown }) & =\frac{30}{50}=0.6 \quad \text { intuition from previous slide }
\end{aligned}
$$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|=65$

$$
\begin{aligned}
p(A \mid B) & =\frac{p(A, B)}{p(B)} \text { definition of conditional probabilities } \\
p(W=\text { late } \mid H=\text { brown }) & =\frac{30}{50}=0.6 \text { intuition from previous slide } \\
& =\frac{p(W=\text { late }, H=\text { brown })}{p(H=\text { brown })} \text { by applying definition }
\end{aligned}
$$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|=65$

$$
\begin{aligned}
& p(A \mid B)=\frac{p(A, B)}{p(B)} \text { definition of conditional probabilities } \\
& p(W=\text { late } \mid H=\text { brown })=\frac{30}{50}=0.6 \text { intuition from previous slide } \\
&=\frac{p(W=\text { late }, H=\text { brown })}{p(H=\text { brown })} \text { by applying definition } \\
&=\frac{0.46}{0.77}=0.6 \\
& \text { Lecture } 6
\end{aligned}
$$

Section 2

Naive Bayes Algorithm

Naive Bayes

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)
- Reading

Two Parts

- Prediction model: How does the model make predictions on new instances?
- Learning algorithm: How is the model created based on annotated data?

Naive Bayes

Prediction Model

Idea: We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

Naive Bayes

Prediction Model

Idea: We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

- $f_{n}(x)$: Value of feature n for instance x
$-\operatorname{argmax}_{i} e$: Select the argument i that maximizes the expression e

Naive Bayes

Prediction Model

Idea: We calculate the probability for each possible class c, given the \dagger item x, and we assign most probably class

```
def argmax(SET, EXP):
    arg = 0
    max = 0
    foreach i in SET:
        val = EXP(i)
        if val > max:
        arg = i
        max = val
    return arg
```

- $f_{n}(x)$: Value of feature n for instance x
- $\operatorname{argmax}_{i} e$: Select the argument i that maximizes the expression e

Naive Bayes

Prediction Model

Idea: We calculate the probability for each possible class c, given the f item x, and we assign most probably class

```
def argmax(SET, EXP):
    arg = 0
    max = 0
    foreach i in SET:
        val = EXP(i)
        if val > max:
        arg = i
        max = val
    return arg
```

- $f_{n}(x)$: Value of feature n for instance x
- $\operatorname{argmax}_{i} e$: Select the argument i that maximizes the expression e

$$
\operatorname{prediction}(x)=\underset{c \in C}{\operatorname{argmax}} p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

Naive Bayes

Prediction Model

Idea: We calculate the probability for each possible class c, given the f item x, and we assign most probably class

```
def argmax(SET, EXP):
    arg = 0
    max = 0
    foreach i in SET:
        val = EXP(i)
        if val > max:
        arg = i
        max = val
    return arg
```

- $f_{n}(x)$: Value of feature n for instance x
$-\operatorname{argmax}_{i} e$: Select the argument i that maximizes the expression e

$$
\operatorname{prediction}(x)=\underset{c \in C}{\operatorname{argmax}} p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

How do we calculate $p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$?

Naive Bayes

Prediction Model

Definition of conditional probabilities

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=
$$

Naive Bayes

Prediction Model

Definition of conditional probabilities

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes

Prediction Model

Definition of conditional probabilities

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes

Prediction Model

Definition of conditional probabilities

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Chain rule
$=\frac{p\left(f_{1} \mid f_{2}, \ldots, f_{n}, c\right) \times p\left(f_{2} \mid f_{3}, \ldots, f_{n}, c\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}$

Naive Bayes

Prediction Model

Definition of conditional probabilities

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Chain rule
$=\frac{p\left(f_{1} \mid f_{2}, \ldots, f_{n}, c\right) \times p\left(f_{2} \mid f_{3}, \ldots, f_{n}, c\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}$
Now we - naively - assume feature independence
$=\frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}$

Naive Bayes
Prediction Model

From previous slide

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes

Prediction Model

From previous slide
$p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}$

Skip denominator, because it's constant*
$\operatorname{prediction}(x)=\underset{c \in C}{\operatorname{argmax}} p\left(f_{1}(x) \mid c\right) \times p\left(f_{2}(x) \mid c\right) \times \cdots \times p(c)$

Naive Bayes

Prediction Model

* This is a hack: The largest number in $\langle 2,6,3\rangle$ is the second. This doesn't change when we divide every number by the same (constant) number. The largest of $\langle 1,3,1.5\rangle$ is the second, and the largest of $\langle 0.2,0.6,0.3\rangle$ is also the second.
It's not a mistake to apply the denominator, but it's also not necessary.

From previous slide

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Skip denominator, because it's constant*
$\operatorname{prediction}(x)=\underset{c \in C}{\operatorname{argmax}} p\left(f_{1}(x) \mid c\right) \times p\left(f_{2}(x) \mid c\right) \times \cdots \times p(c)$ $c \in C$

Naive Bayes

Prediction Model

* This is a hack: The largest number in $\langle 2,6,3\rangle$ is the second. This doesn't change when we divide every number by the same (constant) number. The largest of $\langle 1,3,1.5\rangle$ is the second, and the largest of $\langle 0.2,0.6,0.3\rangle$ is also the second.
It's not a mistake to apply the denominator, but it's also not necessary.

From previous slide

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Skip denominator, because it's constant*
$\operatorname{prediction}(x)=\underset{c \in C}{\operatorname{argmax}} p\left(f_{1}(x) \mid c\right) \times p\left(f_{2}(x) \mid c\right) \times \cdots \times p(c)$
$c \in C$

Naive Bayes

Learning Algorithm

1. For each feature $f_{i} \in F$

- Count frequency tables from the training set:
C (classes)

$v\left(f_{i}\right)$		c_{1}	c_{2}	...	c_{m}
	a	3	2	...	
	b	5	7	...	
	c	0	1	...	
	\sum	8	10		

2. Calculate conditional probabilities

- Divide each number by the sum of the entire column
- E.g., $p\left(a \mid c_{1}\right)=\frac{3}{3+5+0} \quad p\left(b \mid c_{2}\right)=\frac{7}{2+7+1}$

Section 3

Example: Spam Classification

Training

- Data set: 100 e-mails, manually classified as spam or not spam (50/50)
- Classes $C=\{$ true, false $\}$
- Features: Presence of each of these tokens (manually selected): ıcasino», ıenlargement «,

- »Bag of Words« representation

Table: Extracted frequencies for features ıcasino^ and ıtext»

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class
$p\left(\right.$ true $\left.\left\lvert\,\left[\begin{array}{ll}\text { casino } & 0 \\ \text { enlargement } & 0 \\ \text { meeting } & 1 \\ \text { profit } & 0 \\ \text { super } & 0 \\ \text { text } \\ \text { xxx } & 1 \\ \hline\end{array}\right]\right.\right)$

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class
$p\left(\right.$ true \(\left.\left.\left\lvert\, \begin{array}{ll}casino \& 0

enlargement \& 0

meeting \& 1

profit \& 0

super \& 0

text \& 1

xxx \& 1\end{array}\right.\right]\right) \propto\)| $p($ casino $=0 \mid$ true $)$ | \times |
| :--- | :--- |
| $p($ enlargement $=0 \mid$ true $)$ | \times |
| $p($ meeting $=1 \mid$ true $)$ | \times |
| $p($ profit $=0 \mid$ true $)$ | \times |
| $p($ super $=0 \mid$ true $)$ | \times |
| $p($ text $=1 \mid$ true $)$ | |
| $p(x x x=1 \mid$ true $)$ | |

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

3. Assign the class with the higher probability

Danger

-What happens in this situation to the prediction?

Danger

- What happens in this situation to the prediction?
- At some point, we need to multiply with $p($ love $=1 \mid$ true $)=0$
- This leads to a total probability of zero (for this class), irrespective of the other features
- Even if another feature would be a perfect predictor!
\rightarrow Smoothing

Smoothing

- Whenever multiplication is involved, zeros are dangerous
- Smoothing is used to avoid zeros
- Different possibilities
- Simple: Add something to the probabilities
- $\frac{x_{i}+1}{N+1}$
- This leads to values slightly above zero
- Theoretical justification: Some of the probability space is left unused, for events (= words) that we haven't seen yet

References I

围 Jurafsky, Dan/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of Janaury 7, 2023. Prentice Hall. URL: https://web.stanford.edu/~jurafsky/slp3/.

