Recap: Decision Tree, Problem Gambling

» Decision tree

> Classification method
» Transparent for humans (for limited number of features)
> Core idea:

> Repeatedly split the data set using features, until sub sets are »pure«
> Split according to information gain of the features

» Problem Gambling
» Text classification problem
» Non-linguistic use-case, with criteria grounded in medicinal diagnostics
> BERT: First »large language model«
> Pre-training / fine-tuning paradigm
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* Wahlen zum Europaischen Parlament

» Sonntag, 9. Juni, 9:00-18:00 Uhr
» 96 Abgeordnete aus Deutschland
> Listenwahl (d.h. Parteien)
» Relevant fiir uns, weil (praktisch alle) IT-Themen EU-Themen sind

» Kiinstliche Intelligenz

» Digitale Markten

» Chatkontrolle

» Datenschutzgrundverordnung
» Und natirlich: Klimakrise
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Introduction and Overview

» Second machine learning method (after decision trees)
» Probabilistic method (i.e., probabilities are involved)

» Feature-based method

Basic Probability Theory
Naive Bayes Algorithm

Example: Spam Classification
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Section 1

Basic Probability Theory



Basic Probability Theory

Example: Cards

» 32 cards 2 (sample space)
» 4)colorsc: C'= {, M, O, 0}
» 8values: V={7,89,10,J,Q, K, A}

» Individual cards (youtcomes«) are denoted with value and color: 80
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Basic Probability Theory

Basics

Events
» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in
> An event can be any subset of the sample space 2
» Events will be denoted with E
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Basic Probability Theory
Basics
Events

» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in

> An event can be any subset of the sample space 2
» Events will be denoted with E

Examples

» »We draw a heart eight« — £ = {80}
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» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in

> An event can be any subset of the sample space 2
» Events will be denoted with E

Examples

» »We draw a heart eight« — £ = {80}

» »We draw card with a diamond«
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Basic Probability Theory
Basics
Events

» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in

> An event can be any subset of the sample space 2
» Events will be denoted with E

Examples

» »We draw a heart eight« — E = {80}
» »We draw card with a diamond« — E = {7, 80,90, 100, JO, QO, KO, AS}
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Basic Probability Theory

Basics

Events

» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in

> An event can be any subset of the sample space 2
» Events will be denoted with E

Examples

» »We draw a heart eight« — E = {80}
» »We draw card with a diamond« — E = {7, 80,90, 100, JO, QO, KO, AS}

> »We draw a queen
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Events
» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in
> An event can be any subset of the sample space 2
» Events will be denoted with E

Examples

» »We draw a heart eight« — E = {80}
» »We draw card with a diamond« — E = {7, 80,90, 100, JO, QO, KO, AS}
> »We draw a queen« — E = {Q, Qb, @O, QU}
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Basic Probability Theory

Basics

Events
» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in
> An event can be any subset of the sample space 2
» Events will be denoted with E

Examples

» »We draw a heart eight« — E = {80}
»We draw card with a diamond« — E = {7, 8,90, 100, JO, QO, KO, A}

>
> »We draw a queen« — E = {Q, Qb, @O, QU}
> »We draw a heart eight or diamond 10«
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Basic Probability Theory

Basics

Events
» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in
> An event can be any subset of the sample space 2
» Events will be denoted with E

Examples

» »We draw a heart eight« — E = {80}

»We draw card with a diamond« — E = {7, 8,90, 100, JO, QO, KO, A}
»We draw a queen« — E = {Q, Qb, @O, OO}

»We draw a heart eight or diamond 10« — E = {80, 10{}

»We draw any card«

vVvyyvyy
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Basic Probability Theory

Basics

Events
» Generally, we draw cards from a (well shuffled) deck
» We define what events we are interested in
> An event can be any subset of the sample space 2
» Events will be denoted with E

Examples

» »We draw a heart eight« — E = {80}

»We draw card with a diamond« — E = {7, 8,90, 100, JO, QO, KO, A}
»We draw a queen« — E = {Q, Qb, @O, OO}

»We draw a heart eight or diamond 10« — £ = {80, 10}

»We draw any card« — £ =

vVvyyvyy
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Basic Probability Theory

Basics
Probabilities

» Probability p(E): Ratio of size of E to size of Q (Laplace)
> 0<p<1
> p(E) = 0: Impossible event p(E) = 1: Certain event
> p(E) = 0.000001: Very unlikely event
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Basic Probability Theory

Basics
Probabilities

» Probability p(E): Ratio of size of E to size of Q (Laplace)

> 0<p<1

> p(E) = 0: Impossible event p(E) = 1: Certain event

> p(E) = 0.000001: Very unlikely event

Example

> If all outcomes are equally likely: p(E) = |‘£|

> p({80}) = 3
> p({9%, 94,90, 90}) = 5
> p(2) =1 (must happen, certain event)
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Basic Probability Theory

Basics
Probability and Relative Frequency

» Probability p: Theoretical concept, idealization, expectation
» Relative Frequency f: Concrete measure
» Normalised number of observed events

Example

After 10 cards (with returning and shuffling), the event # took place 8 times: f({#}) = &
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Basic Probability Theory

Basics
Probability and Relative Frequency

» Probability p: Theoretical concept, idealization, expectation
» Relative Frequency f: Concrete measure
» Normalised number of observed events

Example

After 10 cards (with returning and shuffling), the event # took place 8 times: f({#}) = &

» For large numbers of drawings, relative frequency approximates the probability
> lime f=p
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Basic Probability Theory

Basics
Probability and Relative Frequency

» Probability p: Theoretical concept, idealization, expectation
» Relative Frequency f: Concrete measure
» Normalised number of observed events

Example
After 10 cards (with returning and shuffling), the event # took place 8 times: f({#}) = &
» For large numbers of drawings, relative frequency approximates the probability
> limy f=p
> In practice, we will often use determine probabilities by counting relative frequencies
» Assumption: Frequency is measured on representative and large data set
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Basic Probability Theory

Independent Events
Joint Probability

» We are often interested in multiple events (and their relation)
> E: We draw 80 two times in a row (putting the first card back)

» [ First card is 80
» F5: Second card is 80
> p(E) = p(E1, Bs) = p(Ex) * p(Ey) = 35 % 35 = 0.0156
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Basic Probability Theory

Independent Events
Joint Probability

» We are often interested in multiple events (and their relation)
> E: We draw 80 two times in a row (putting the first card back)

» Fy: First card is 80
» F5: Second card is 80
> p(E) = p(E1, E2) = p(Er) * p(Ey) = 3% * 3% =0.0156
> E: We draw Q two times in a row (putting the first card back)

» Fy: First card is XO
» F5: Second card is XO©

> p(E) = p(E1, Bs) = p(Ey) * p(By) = § % § = 0.0625

1
* 7
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Basic Probability Theory

Independent Events
Joint Probability

» We are often interested in multiple events (and their relation)

> E: We draw 80 two times in a row (putting the first card back)
» [ First card is 80
» F5: Second card is 80
> p(E) = p(Er, Bs) = p(Er) * p(Ez) = 55 * 55 = 0.0156

> E: We draw Q two times in a row (putting the first card back)
» Fy: First card is XO
» F5: Second card is XO©
> p(E) = p(Er, E2) = p(Ey) * p(E2) = % % 1 =0.0625

P> These events are independent
> because we return and re-shuffle the cards all the time
» Drawing 80 the first time has no influence on the second drawing
» Default case with dice

Lecture 6



Basic Probability Theory

Dependent Events
Conditional Probability

» We no longer return the card

» E: We draw 80 two times in a row

» F,: First card is 80
» F5: Second card is 80
> By =
» This no longer works, because the events are not independent
» Obvious: Only one 80 in the game, and p(E2) has to express that it might be gone
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Basic Probability Theory

Dependent Events
Conditional Probability

» We no longer return the card

» E: We draw 80 two times in a row

E1: First card is 80
E5: Second card is 80

)

>
>
>
» This no longer works, because the events are not independent

» Obvious: Only one 80 in the game, and p(E2) has to express that it might be gone

This is done with the notion of conditional probability
p(Er, E2) = p(E1) * p(E2| Ex)
> p(Ez|E1) =0, therefore p(E) =0

vy
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Basic Probability Theory

Dependent Events
Conditional Probability
A less obvious example:

» We draw two cards in a row
» FEo: Card is XO
> Ey: Card is X$
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Basic Probability Theory

Dependent Events
Conditional Probability
A less obvious example:

» We draw two cards in a row
» FEo: Card is XO
> Ey: Card is X$

p(EQ% E@)

P(Eo) * p(EolEo)
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Conditional Probability
A less obvious example:

» We draw two cards in a row
» FEo: Card is XO
> Ey: Card is X$
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Basic Probability Theory

Dependent Events
Conditional Probability
A less obvious example:

» We draw two cards in a row
» FEo: Card is XO
> Ey: Card is X$

p(EQ% E@)

p(Eo) * p(Eo|Eo)
8 7
3 * 3= 0.056
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Basic Probability Theory

Dependent Events
Conditional Probability
A less obvious example:
> We draw two cards in a row
» FEo: Card is XO
> Ey: Card is X$

p(Eo, Ev) = p(Ev)* p(Eo|Eo)
8 7
= 3 * 3= 0.056

p(Eo, Eo) = p(Eg) * p(Eo|Eg)
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Basic Probability Theory

Dependent Events
Conditional Probability
A less obvious example:

» We draw two cards in a row
» FEo: Card is XO
> Ey: Card is X$

p(Eo, Eo) = p(Eo)* p(Eo|Eo)

8 7
= 3 * 31 = 0.056
p(Ey, Eo) = p(Ey) * p(Eo|Eg)
8 8
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Basic Probability Theory

Conditional and Joint Probabilities

Another Example

> Setup: We make a survey in a street in Cologne

> We count four types of events in two random variables:

> Person has brown hair (H= B)

» Person has red hair (H = R)

> Person likes to wake up late (W= L)
» Person likes to wake up early (W = E)
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Basic Probability Theory

Conditional and Joint Probabilities

Another Example

> Setup: We make a survey in a street in Cologne
> We count four types of events in two random variables:

> Person has brown hair (H= B)

» Person has red hair (H = R)

> Person likes to wake up late (W= L)
» Person likes to wake up early (W = E)

» Assumption: B/ R and L / E are mutually exclusive
» |.e., a single person cannot have red and brown hair
> A single person can be encoded with two symbols (e.g., »BL«)
A But this combination is not unique — in contrast to the cards example

> All following numbers are made up
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Basic Probability Theory

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

I W/ H— brown red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Survey Results, Q: Group of questioned people

Lecture 6 14 /27



Basic Probability Theory

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

W/ H— brown red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Survey Results, Q: Group of questioned people

If we pick a random person, what's the probability that this person has brown hair?

p(H = brown) =
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Basic Probability Theory

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

W/ H—  brown red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Survey Results, 2: Group of questioned people

If we pick a random person, what's the probability that this person has brown hair?

50
H: b = —
p( rown) o5
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Basic Probability Theory

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

W/ H— brown red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Survey Results, Q: Group of questioned people

p(H = brown) = % p(H = red) = % sums per row or column
p(W=early) = 2 p(W=late) = 2 P
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Basic Probability Theory

Conditional and Joint Probabilities

Example
Relation between hair color H and preferred wake-up time W

W/ H— brown red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Survey Results, 2: Group of questioned people

» Joint probability: p(W = late, H = brown) = %
P> Probability that someone has brown hair and prefers to wake up late
» Denominator: Number of all items
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Basic Probability Theory

Conditional and Joint Probabilities

Example
Relation between hair color H and preferred wake-up time W

W/ H— brown red sum
early 20 10 30
late 30 5 35
sum 50 15 65

Table: Survey Results, 2: Group of questioned people

» Joint probability: p(W = late, H = brown) = %
P> Probability that someone has brown hair and prefers to wake up late

» Denominator: Number of all items
> Conditional probability: p(W = late|H = brown) = 20

— 50

» Probability that one of the brown-haired participants prefers to wake up late
» Denominator: Number of remaining items (after conditioned event has happened)
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Basic Probability Theory

Conditional and Joint Probabilities

Example
brown red margin
early p(W=e,H=0)=031 p(W=e¢ H=r)=0.15 p(W=¢e)=0.46
late p(W=1H=0b)=046 p(W=1I1H=r)=0.08 p(W=1)=0.54
margin p(H=b) =0.77 p(H=r)=0.23 p(Q) =1

Table: (Joint) Probabilities, derived by dividing everything by |2] = 65
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Basic Probability Theory

Conditional and Joint Probabilities

Example
brown red margin
early p(W=e,H=0)=031 p(W=e¢ H=r)=0.15 p(W=¢e)=0.46
late p(W=1H=0b)=046 p(W=1I1H=r)=0.08 p(W=1)=0.54
margin p(H=b) =0.77 p(H=r)=0.23 p(Q) =1

Table: (Joint) Probabilities, derived by dividing everything by |2] = 65

A, B
p(A|B) = p(4, 5) definition of conditional probabilities
p(B)
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Basic Probability Theory

Conditional and Joint Probabilities

Example
brown red margin
early p(W=e,H=0)=031 p(W=e¢ H=r)=0.15 p(W=¢e)=0.46
late p(W=1H=0b)=046 p(W=1I1H=r)=0.08 p(W=1)=0.54
margin p(H=b) =0.77 p(H=r)=0.23 p(Q) =1

Table: (Joint) Probabilities, derived by dividing everything by |2] = 65

p(A|B)

p(W = late| H = brown)

p(4, B)
p(B)
30
50

definition of conditional probabilities

= 0.6 intuition from previous slide
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Basic Probability Theory

Conditional and Joint Probabilities

Example
brown red margin
early p(W=e,H=0)=031 p(W=e¢ H=r)=0.15 p(W=¢e)=0.46
late p(W=1H=0b)=046 p(W=1I1H=r)=0.08 p(W=1)=0.54
margin p(H=b) =0.77 p(H=r)=0.23 p(Q) =1

Table: (Joint) Probabilities, derived by dividing everything by |2] = 65

A B
p(A|B) = p(4, B) definition of conditional probabilities
p(B)
p(W = late| H = brown) = % = 0.6 intuition from previous slide
W=late, H=b ,
= il p(; : brown)rown) by applying definition

Lecture 6 15 /27



Basic Probability Theory

Conditional and Joint Probabilities

Example

brown red margin
early p(W=e,H=0)=031 p(W=e¢ H=r)=0.15 p(W=¢e)=0.46
late p(W=1H=0b)=046 p(W=1I1H=r)=0.08 p(W=1)=0.54
margin p(H=b) =0.77 p(H=r)=0.23 p(Q) =1

Table: (Joint) Probabilities, derived by dividing everything by |2] = 65

Lecture 6

A B
p(A|B) = p(4, B) definition of conditional probabilities
p(B)
p(W = late| H = brown) = % = 0.6 intuition from previous slide
W=late, H=b ,
= il p(; : brown)rown) by applying definition
0.46
= — =06
0.77
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Section 2

Naive Bayes Algorithm



Naive Bayes Algorithm

Naive Bayes

» Probabilistic model (i.e., takes probabilities into account)
» Probabilities are estimated on training data (relative frequencies)
> Reading Jurafsky/Martin (2023, Chapter 4)

Two Parts

» Prediction model: How does the model make predictions on new instances?

» Learning algorithm: How is the model created based on annotated data?
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

Idea: We calculate the probability for each possible class ¢, given the feature values of the
item x, and we assign most probably class
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

Idea: We calculate the probability for each possible class ¢, given the feature values of the
item x, and we assign most probably class

» f.(x): Value of feature n for instance z

» argmax;e: Select the argument ¢ that maximizes the expression e
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Naive Bayes Algorithm

Naive Ba es def argmax(SET, EXP):
y arg = 0
Prediction Model max = O
foreach i in SET:
val = EXP (i)
if val > max:
arg = i
max = val
return arg

Idea: We calculate the probability for each possible
item x, and we assign most probably class

S ¢, given the 1

» f.(x): Value of feature n for ins

> argmax;e: Select the ment ¢ that maximizes the expression e
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Naive Bayes Algorithm

def argmax(SET, EXP):

Naive Bayes i
Prediction Model max = O
foreach i in SET:
val = EXP (i)
if val > max:
arg = i
max = val
return arg

Idea: We calculate the probability for each possible
item x, and we assign most probably class

» f.(x): Value of feature n for ins

> argmax;e: Select the ment ¢ that maximizes the expression e

prediction(z) = argmax p(c|fi(z), fa(2), ..., fu(2))
ceC
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Naive Bayes Algorithm

def argmax(SET, EXP):

Naive Bayes i
Prediction Model max = O
foreach i in SET:
val = EXP (i)
if val > max:
arg = i
max = val
return arg

Idea: We calculate the probability for each possible
item x, and we assign most probably class

» f.(x): Value of feature n for ins

> argmax;e: Select the ment ¢ that maximizes the expression e

prediction(z) = argmax p(c|fi(z), fa(2), ..., fu(2))
ceC

How do we calculate p(c|fi(), fo(2), ..., fu(x))?
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

Definition of conditional probabilities

p(C|f1, <o >fn) =

Lecture 6 19 /27



Naive Bayes
Prediction Model

p(clfi,- -

Naive Bayes Algorithm

Definition of conditional probabilities
p(c7f17f27 e 7fn)

7f”) p(f17f27"'7fn)
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

Definition of conditional probabilities
plefisfos o) _ P fos o s ©)
p(f17f27"'7fn) p(f17f27"'7fn)

p(C|f1, s >fn)
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

Definition of conditional probabilities
p(c7f17f27 v 7f7l) o p(f17f27 v 7f7l7 C)

Pl = ) T P fe )

Chain rule

p(fl|f27"' 7fna C) X p(f?‘f:i?' . '7fn7 C) X X p(C)

p(f17f27 cee 7fn)
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

Definition of conditional probabilities
p(c7f17f27 v 7f7l) o p(f17f27 v 7f7l7 C)

Pl = ) T P fe )

Chain rule

p(fl|f27"' 7fna C) X p(f?‘f:i?' . '7fn7 C) X X p(C)

p(f17f27 cee 7fn)

Now we — naively — assume feature independence
p(file) x p(falt) x - -- x p(c)
P(flva, cee afn)

Lecture 6
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Naive Bayes
Prediction Model

p(clf, -

Naive Bayes Algorithm

From previous slide
p(file) X p(faft) x --- < p(c)

7f’n) p(fl,fg,.--7fn)
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

From previous slide
p(file) X p(faft) x --- < p(c)

plefi,- o fn) =
(e » p(fis oo fn)

Skip denominator, because it’s constant™
prediction(z) = argmax p(fi(z)|c) x p(fa(x)|c) x -+ x p(c)

ceC

Lecture 6
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Naive Bayes Algorithm

* This is a hack: The largest number in (2, 6, 3)

H is the second. This doesn't change when we divide

N alve Bayes every number by the same (constant) number. The

- largest of (1, 3, 1.5) is the second, and the largest
Prediction Model

of (0.2,0.6,0.3) is also the second.
It's not a mistake to apply the denominator, but it's
also not necessary.

From previous slide

_ plfile) x p(hlt) x - x p(e)
p(C’flv"'afn) - p(fl;wa-wfn)

Skip denominator, because it’s constant™

prediction(z) = argerréaxp(fl(xﬂc) x p(fa(z)|c) x -+ x p(c)



Naive Bayes Algorithm

* This is a hack: The largest number in (2, 6, 3)

H is the second. This doesn't change when we divide

N alve Bayes every number by the same (constant) number. The

- largest of (1, 3,1.5) is the second, and the largest
Prediction Model ( )

of (0.2,0.6,0.3) is also the second.
It's not a mistake to apply the denominator, but it's
also not necessary.

From previous slide

_ plfile) x p(hlt) x - x p(e)
p(C’flv"'afn) - p(fl,wa-wfn)

Skip denominator, because it’s constant™

prediction(z) = argerréaxp(fl(xﬂc) x p(fa(z)|c) x -+ x p(c)

’ Where do we get p(fi(z)|c)? — Training!

20/27
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Naive Bayes Algorithm

Naive Bayes
Learning Algorithm

1. For each feature f; € F

» Count frequency tables from the training set:

C (classes)

1 G . Cm
a 3 2
oo Lot
S8 10

2. Calculate conditional probabilities
» Divide each number by the sum of the entire column
> Eg, plaler) = 5785 p(ble2) = 507
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Section 3

Example: Spam Classification



Example: Spam Classification
Training
> Data set: 100 e-mails, manually classified as spam or not spam (50/50)

> Classes C' = {true, false}

> Features: Presence of each of these tokens (manually selected): »casino¢, renlargementy,
ymeetingy, )profit<, ysuper, rtexte, »xXxx«

» »Bag of Words« representation

C C
true false true false
o 1 45 25 1 15 35
£ 0 5 25 *5 0 35 15
S v 50 50 T Y 50 50

Table: Extracted frequencies for features ycasino« and rtext«
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Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

p | true

Example: Spam Classification

casino
enlargement
meeting
profit

super

text

XXX

== OOk OO

Lecture 6
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Example: Spam Classification

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

casino 0 p(casino = 0|true) X
enlargement 0 p(enlargement = Oftrue) X
meeting 1 p(meeting = 1|true) X
p | true|| profit 0 o  p(profit = 0|true) X
super 0 p(super = 0|true) X
text 1 p(text = 1|true) X

| xxx L] p(xxx = 1|true)
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Prediction

Example: Spam Classification

1. Extract word presence information from new text

2. Calculate the probability for each possible class

p | true

casino
enlargement
meeting
profit

super

text

XXX

== OOk OO

Lecture 6

p(casino = 0O|true)
p(

p(meeting = 1|true)
p(profit = 0|true)
p(super = 0|true)
p(text = 1|true)
p(xxx = 1|true)

) 15
Xi

enlargement = O|true)

oo X — X
50 50

X X X X X X
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Example: Spam Classification

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

casino 0 p(casino = 0|true) X
enlargement 0 p(enlargement = Oltrue) X
meeting 1 p(meeting = 1|true) X
p | true|| profit 0 o  p(profit = 0|true) X
super 0 p(super = 0|true) X
text 1 p(text = 1|true) X
| xxx L] p(xxx = 1|true)
5 15
= X o X e X X =L
50 50

casino 0
p | false ) . x

3. Assign the class with the higher probability
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Example: Spam Classification

Danger
C
true false
1 0 35
2 0 50 15
_O -
> 50 50

» What happens in this situation to the prediction?

Lecture 6
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Example: Spam Classification

Danger
C
true false
1 0 35
2 0 50 15
_O -
> 50 50

» What happens in this situation to the prediction?
» At some point, we need to multiply with p(love = 1|true) =0

» This leads to a total probability of zero (for this class), irrespective of the other features
» Even if another feature would be a perfect predictor!

— Smoothing
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Example: Spam Classification

Smoothing

> Whenever multiplication is involved, zeros are dangerous
» Smoothing is used to avoid zeros
> Different possibilities
» Simple: Add something to the probabilities
> ;41
N+1

» This leads to values slightly above zero

» Theoretical justification: Some of the probability space is left unused, for events (=
words) that we haven't seen yet
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Example: Spam Classification
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