Recap

- So far
- Two ML algorithms: Naive Bayes, decision tree
- Feature-based ML: Features interpretable and based on »domain knowledge«
- Naive Bayes
- Calculate p (CATEGORY|FEATURES), assign class with highest probability
- Assume feature independence

Logistic Regression
 Sprachverarbeitung (VL + Ü)

Nils Reiter

June 13, 2024

Neural Networks

- Conceptually developed in the 20th century
- Mainstream ML method in NLP since 2010
- Building block of large language models
- But also a flexible ML algorithm by itself
- Building block of neural networks: Logistic regression

Regression

Linear regression

- Prediction of numeric values (e.g., COVID-19 cases)

Regression

Linear regression

- Prediction of numeric values (e.g., C(-

Regression

Linear regression

- Prediction of numeric values (e.g., COVID-19 cases)
- »Linear« regression: Prediction of a linear relation (i.e., a line)
- Most real problems are not linear - in particular not COVID-19 cases ...

Regression

Linear regression

- Prediction of numeric values (e.g., COVID-19 cases)
- »Linear« regression: Prediction of a linear relation (i.e., a line)
- Most real problems are not linear - in particular not COVID-19 cases ...

Logistic Regression

- Classification algorithm: Instances are grouped into previously known classes
- Binary classification: Two classes (e.g., positive/negative)
- Extension of linear regression

Linear/logistic regression in parallel

Linear Regression

- Input (x): A (collection of) numeric feature values
- Output (y): A numeric value

Example

Given the length of a narrative text in words, predict the number of characters present in its plot

Linear Regression

The data set

Lange	
\downarrow	!
x	y (\# characters)
10	3
105	5
150	8
210	12
250	7
295	13

Linear Regression

The data set

Figure: Data set, each \times represents a text (x : text length, y : num. of characters)

Linear Regression

The data set

x	y (\# characters)
10	3
105	5
150	8
210	12
250	7
295	13

Figure: Data set, each \times represents a text (x : text length, y : num. of characters)

Linear Regression

Prediction Model

- Linear regression with one variable (= univariate linear regression)
- Data: (x, y)
- Prediction (hypothesis function): $y=h_{a, b}(x)=a x+b$
- How to set parameters \underline{a} and \underline{b} ? \rightarrow training algorithm

$$
h(x)=x
$$

Linear Regression

Prediction Model

- $h_{a, b}(x)=a x+b$ describes a set of functions
- $h_{1,0}(x)$ is one concrete function

Linear vs. Logistic Regression

- Linear regression: Prediction of numerical data
- Logistic regression: Prediction of (binary) categorical data

Linear vs. Logistic Regression

- Linear regression: Prediction of numerical data
- Logistic regression: Prediction of (binary) categorical data

Examples

- Our interest
- Literature quality
- Given the number of characters in a narrative text
- Will a book win the Nobel prize?
- Two classes: Yes/No

Logistic Regression

The data set

How to predict these values?

How to predict these values?

Parameter Fitting

- Linear equations can be wrapped in a logistic one
- Same parameters to be tuned (a and b)
- $e=\sum_{n=0}^{\infty} \frac{1}{n!}=2.71828 \quad$ (Euler's number)

The Logistic Function

The Logistic Function

The Logistic Function

The Logistic Function

The Logistic Function

$$
\begin{aligned}
& y=\frac{1}{1+e^{-(a x+b)}} \quad \text { (general form) } \\
& y=\frac{1}{1+e^{-(1 * x+0)}} \\
& y=\frac{1}{1+e^{-(10 * x-15)}} \\
& y=\frac{1}{1+e^{-(10 * x+15)}} \\
& y=\frac{1}{1+e^{-(100 * x-10)}}
\end{aligned}
$$

The Logistic Function

Summary: Logistic Regression (with a single variable)

STMIIT: Logistic regression is half of the math of deep learning

Summary: Logistic Regression (with a single variable)

Sromes Logistic regression is half of the math of deep learning

- Logistic Regression: Predicting binary values
- Model
- Logistic equations
- $y=\frac{1}{1+e^{-(a x+b)}}$
- Learning algorithm: How to choose a and b ?

Gradient Descent

Learning Regression Models

- How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?
- Learning algorithm Gradient Descent

Learning Regression Models

- How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?
- Learning algorithm Gradient Descent
sP1
ALERTI Gradient descent is half of the algorithms of deep learning

Loss: Intuition

The loss measures the ıwrongness of values for a and b.

Loss: Intuition

The loss measures the iwrongnesss of values for a and b.

- How big is the gap between a hypothesis and the data?
- Is $(a, b)=\underline{(0.3,0.5)}$ or $(a, b)=(0.4,0.4)$ better?

Loss: Intuition

The loss measures the iwrongnesss of values for a and b.

- How big is the gap between a hypothesis and the data?
- Is $(a, b)=(0.3,0.5)$ or $(a, b)=(0.4,0.4)$ better?

Loss function: Intuition

- Loss should be as small as possible
- Total loss can be calculated for given parameters $\vec{w}=(a, b)$ (and a full data set)
\Rightarrow I.e.: Loss can be expressed as a function of \vec{w} !

Loss function: Intuition

- Loss should be as small as possible
- Total loss can be calculated for given parameters $\vec{w}=(a, b)$ (and a full data set)
\Rightarrow I.e.: Loss can be expressed as a function of \vec{w} !
- Idea:
- We change (w) until we find the minimum of the function
- We use the derivative to find out if we are in a minimum
- The derivative also tells us how to change the update parameters a and b

Loss Function: Intuition

Figure: The loss function with two parameters

Loss function: Intuition

Loss function: Intuition

Loss function: Intuition

Function should be convex!
If not, we might get stuck in local minimum

$$
h_{a, b}(x)=a x+b
$$

Hypothesis vs. Loss Function

$$
h(x)=\underline{a} x+b
$$

- Hypothesis function h
- Calculates outcomes, given feature values x
- Loss function J

$$
J_{D}(a, b)=\cdots
$$

- In reality, \vec{w} represents many more parameters (thousands)

Figure: Visualizing gradient descent Source

Loss Function

Loss function depends on hypothesis function

Linear hypothesis function

- $h(x)=a x+b$
- Loss: Mean squared error

Loss Function

Definition

> Loss function depends on hypothesis function

Linear hypothesis function

- $h(x)=a x+b$
- Loss: Mean squared error

Logistic hypothesis function

- $h(x)=\frac{1}{e^{-(b+a x)}}$
- Loss: (Binary) cross-entropy loss

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
\rightarrow Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0} \quad \sim^{-2}=\langle a, b\rangle$

$$
\begin{gathered}
\vec{w}=(a, b) \text { : parameters } h_{\substack{0}}^{\text {hypothesis function } m \text { : number of items }} \\
(\mathcal{J}(\vec{w})=
\end{gathered}
$$

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\vec{w}=(a, b): \text { parameters } h_{\vec{w}}: \text { hypothesis function } m \text { : number of items }
$$

- Calculate the loss for item i

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\begin{aligned}
& \vec{w}=(a, b) \text { : parameters } h_{\vec{w}} \text { : hypothesis function } m \text { : number of items } \\
& \qquad J(\vec{w})=\quad\left(h_{\vec{w}}\left(x_{i}\right)-y_{i}\right)^{2}
\end{aligned}
$$

- Calculate the loss for item i
- Square the error

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\begin{aligned}
& \vec{w}=(a, b) \text { : parameters } h_{\vec{w}} \text { : hypothesis function } m \text { : number of items } \\
& \qquad J(\vec{w})=\sum_{i=1}^{m}\left(h_{\vec{w}}\left(x_{i}\right)-y_{i}\right)^{2}
\end{aligned}
$$

- Calculate the loss for item i
- Square the error
- Sum them up

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\vec{w}=(a, b) \text { : parameters } h_{\vec{w}}: \text { hypothesis function } m \text { : number of items }
$$

$$
J(\vec{w})=\frac{1}{m} \sum_{i=1}^{m} \frac{\left.h_{\vec{w}}\left(x_{i}\right)-y_{i}\right)^{\text {error }}}{\text { equed }}
$$

- Calculate the loss for item i
- Square the error
- Sum them up
- Divide by the number of items
- Known as: Mean squared error

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\begin{aligned}
& \vec{w}=(a, b) \text { : parameters } h_{\vec{w}} \text { : hypothesis function } m \text { : number of items } \\
& \qquad J(\vec{w})=\frac{1}{2} \frac{1}{m} \sum_{i=1}^{m}\left(h_{\vec{w}}\left(x_{i}\right)-y_{i}\right)^{2}
\end{aligned}
$$

- Calculate the loss for item i
- Square the error
- Sum them up
- Divide by the number of items
- Known as: Mean squared error
- Divide by two
- out of convenience, because derivation

Loss function

Definition for Logistic Regression

- Two cases: (yii) $=0$ or $y_{i}=1-y_{i}$: real outcome for instance i

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i

$$
J(\vec{w})=
$$

$\left(1-h_{\vec{w}}\left(x_{i}\right)\right)$

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i

$$
J(\vec{w})=\quad \log h_{\vec{w}}\left(x_{i}\right)+\quad \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)
$$

y_{i}	$h_{\vec{w}}\left(x_{i}\right)$	$y_{i} \log h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)$
0	1	-23.2535
0	0	0

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i

$$
J(\vec{w})=\quad \frac{1}{y_{i}} \log h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)
$$

y_{i}	$h_{\vec{w}}\left(x_{i}\right)$	$y_{i} \log h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)$
0	1	-23.2535
0	0	0
1	1	0
1	0	-23.2535

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i

$$
\begin{aligned}
& J(\vec{w})=-\left(\frac{1}{m} \sum_{i=0}^{m} y_{i} \log h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)\right. \\
& \begin{array}{ccc}
1 & 1-0 \quad 1-1 \quad \log 0 \\
y_{i} & h_{\vec{w}}\left(x_{i}\right) & \underline{y_{i} l \log h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)} \\
\hline 0 & 1 & -23.2535 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & -23.2535 \\
1 & 0.8 & -0.3219281 \\
1 & 0.2 & -2.321928 \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i

$$
J(\vec{w})=-\frac{1}{m} \sum_{i=0}^{m} \underbrace{y_{i} \log h_{\vec{w}}\left(x_{i}\right)}_{0 \text { iff } y_{i}=0}+\underbrace{\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)}_{0 \text { iff } y_{i}=1}
$$

y_{i}	$h_{\vec{w}}\left(x_{i}\right)$	$y_{i} \log h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)$
0	1	-23.2535
0	0	0
1	1	0
1	0	-23.2535
1	0.8	-0.3219281
1	0.2	-2.321098

Side note: Log Probabilities

- Relative order is stable: If $a>b$, then $\log a>\log b$
- No information loss

Side note: Log Probabilities

- Relative order is stable: If $a>b$, then $\log a>\log b$
- No information loss
- Multiplication turns to addition $\log (a \cdot b)=\log a+\log b$
- Addition is much faster than multiplication in a computer
- Pays off because we're doing this a lot

More Dimensions

- Above: 1 dimension, 2 parameters
- a : slope, b : y-intercept
- Input feature x, a single value

More Dimensions

- Above: 1 dimension, 2 parameters
- a : slope, b : y-intercept
- Input feature x, a single value
- More dimensions
- $\vec{w}=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle$ ($(n$ dimensions)
- Input vector \vec{x} with $n-1$ dimensions
- Hypothesis function: $h_{\vec{w}}(x)=w_{n} x_{n}+w_{n-1} x_{n-1}+\ldots w_{1} x_{1}+w_{0}$
- w_{0} : y-intercept, w_{1} to w_{n} : slopes

More Dimensions

- Above: 1 dimension, 2 parameters
- a : slope, b : y-intercept
- Input feature x, a single value
- More dimensions
- $\vec{w}=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle$ (n dimensions)
- Input vector \vec{x} with $n-1$ dimensions
- Hypothesis function: $h_{\vec{w}}(x)=w_{n} x_{n}+w_{n-1} x_{n-1}+\ldots w_{1} x_{1}+w_{0}$
- w_{0} : y-intercept, w_{1} to w_{n} : slopes
- Algorithms
- Derivatives more complicated
- Otherwise identical

Section 2
Summary

Summary

Regression

- Fitting parameters to a data distribution
- Linear R: Numeric prediction algorithm
- Prediction model: $h_{\vec{w}}(x)=a x+b$
- Logistic R: Classification algorithm
- Prediction model: $h_{\vec{w}}(x)=\frac{1}{e^{-(b+a x)}}$
- Learning algorithm: Gradient descent

Gradient Descent

- Initialise \vec{w} with random values (e.g., 0)
- Repeat:
- Find the direction to the minimum by taking the derivative
- Change \vec{w} accordingly, using a learning rate η
- Stop when \vec{w} don't change anymore

