
Recap: Machine Learning

Naive Bayes

I Probabilistic method for classification
I Naive because we ignore feature

dependencies
I Prediction model:

argmax
c∈C

p(c|f1(x), f2(x), . . . , fn(x))

I Training: Count relative frequencies

Logistic Regression

I Regression method for binary
classification

I Output numbers interpreted as
probabilities

I Prediction model:

1

1 + e−(ax+b)

I Training: Gradient descent with loss
function
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Neural Networks



Neural Networks

From a Logistic Regression to a Neuron

I Hypothesis function of logistic regression:

h(x) = σ(w0 + w1x1) with σ(x) = 1

1 + e−x

I Maps one value to another (just like many other functions)
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Neural Networks

What is a Neural Network?

w0x1
w1 yσ

y = σ(w0 + w1x)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)
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Neural Networks

What is a Neural Network?
Straightforward to extend to multiple features

w0

x1

x2

w1

w2

yσ

y = σ(w1x1 + w2x2 + w0)

Figure: 1 neuron (with 2 features)
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Neural Networks

What is a Neural Network?
Straightforward to extend to multiple features and multiple regression nodes

b31

b21

w 2311

b22
w23
21

b23

w
23
31

x1

w12
11

w12
12

w 1213x2

w
12
21

w12
22

w12
23

σ(b21 + w11x1 + w21x2)

σ(b22 + w12x1 + w22x2)

σ(b23 + w13x1 + w23x2)

σ(b31 + w11y21 + w21y22 + w31y23)

Figure: A simple neural network with 1 hidden layer (and 13 parameters)

Notation
wkn

jm : Connection between neuron j in
layer k and neuron m in layer n
σ: activation function (e.g., logistic)
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Neural Networks

Prediction Model: Forward Pass

I If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
I Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

I Practically, a lot of the computation happens in matrices
I Hidden layer

I Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
I Biases B2 = (b21, b22, b23)

I Hidden layer computation: f2(X) = σ((W ᵀ
1,2X) + B2)

I Deep learning involves a lot of matrix multiplication
I GPUs are highly optimized for this
I Hint: Gaming-GPUs that support CUDA are also usable for deep learning
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Neural Networks

Feed-Forward Neural Networks

I The above is called a ›feed-forward neural network‹ (FFNN)
I Information is fed only in forward direction

I Configuration choices
I Activation function (next slide)
I Layer size: Number of neurons in each layer
I Number of layers
I Loss function
I Optimizer

I Training choices
I Epochs/batches
I Training status displays
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Neural Networks

Feed-Forward Neural Networks
Activation Functions

All neurons of one layer have the same
Popular choices:

logistic y = σ(x) = 1
1+e−x – ›squashes‹ everything to a value between 0 and 1

relu y = max(0, x) – Makes everything negative to 0
softmax Scales a vector such that values sum to 1 (probability distribution)
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Neural Networks

Training: »Back Propagation«

I Similar to gradient descent
I But

I A lot more parameters
I Because of multiple layers: Vanishing gradients

I Back propagation involves a lot of multiplication
I Factors are between zero and one
⇒ Numbers get very small very quickly

I Training choice: Batches and epochs
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Neural Networks

Training a Feedforward Neural Network I

Stochastic Gradient Descent (SGD)
I Gradient Descent

I Apply θ to all training instances
I Calculate loss over entire data set

I Stochastic Gradient Descent
I Data set in random order
I Calculate loss for every single instance, then update weights

Batch size: Number of items after which weights are updated
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Neural Networks

Training a Feedforward Neural Network II
When to stop the training

I Logistic regression (last week): Stop in minimum
I In theory, that’s what we want
I In practice

I We usually are not exactly in the minimum
I It’s not important to be exactly in the minimum

⇒ Fixed number of iterations over the data set (= number of epochs)

Batches vs. Epochs

batch Number of instances used before updating weights
epochs Number of iterations over all instances
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Neural Networks

Dimensions

I Dimensionality of neural networks major source of confusion

I In this example
I Single input object represented with two numbers (= 1D)
I Output is a single number

I Entire input data set: 2D (because multiple instances)
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Neural Networks

Dimensions

x1 x2 y

0.5 0.3 0.7
0.1 -0.2 0.2

...
...

...
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Neural Networks

Binary Classification

I So far: Binary classification
I Two classes, represented as 0 or 1, Y = {0, 1}
I Hypothesis function maps from n-dimensional input vector to [0; 1]

I h : Rn → [0; 1]
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Neural Networks

Multi-class Classification

I Each class is represented by one output neuron
I Three classes (e.g., positive, neutral, negative)
I Activation function of last layer: softmax

I Similar to sigmoid (i.e., everything is in [0; 1]), and
I Everything adds up to 1

I Input representation: One-hot-encoding
I A vector with one dimension for each class
I The element with the correct class is 1, all others are 0
I E.g.: [0, 1, 0] represents that the second class is correct
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Word2Vec

Literature basis

I Two very influential papers by Mikolov et al.
I T. Mikolov/K. Chen/G. Corrado/J. Dean (2013). »Efficient Estimation of Word

Representations in Vector Space«. In: ArXiv e-prints
I Tomas Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). »Distributed

Representations of Words and Phrases and their Compositionality«. In: Advances in Neural
Information Processing Systems 26. Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran
Associates, Inc., pp. 3111–3119

I Software package
I word2vec – https://github.com/tmikolov/word2vec

Originally published on »Google Code«
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Word2Vec

Basics

I Recap: First session
I No interpretable dimensions
I Dense vectors: No zeros, and much fewer dimensions than in count vectors

I Word2vec
I Let’s use the learned parameters as word vectors

I (one parameter vector per word)
I How to come up with a task that generates these parameters?
I An application for neural networks
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Word2Vec

Two tasks

Continuous Bag of Words (CBOW)
Context words used to predict one word

Skip-Gram
One word used to predict its context
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Word2Vec

Skip-Gram

I Context: ±2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ...

c1 c2 t c3 c4

I Classifier:
I Predict for any pair (t, c) wether c is really a context word for t
I Formally: p(+|~t,~c)

I Probability of t and c being positive examples, using the respective vectors
I How can we determine probability, based on vectors?
I Vector similarity → probability

I Measure for similarity of vectors? Dot product �
I Dot product to probability? Logistic function �

I »a word is likely to occur near the target if its embedding is similar to the target embedding«
Jurafsky/Martin (2023, 18 f.)
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Word2Vec

When are vectors similar?

I Operation that takes two vectors and returns a similarity score
I Linear algebra: dot product

I A.k.a. scalar product, inner product, Skalarprodukt, Punktprodukt, inneres Produkt

~a ·~b = |~a||~b| cos^(~a,~b)

=

N∑
i=1

aibi
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Word2Vec

Skip-gram
Notation
t, c: words
~t, ~c: vectors for the words

p(+|t, c) = σ(~t ·~c) = 1

1 + e−~t·~c

p(−|t, c) = 1− σ(~t ·~c) = 1− 1

1 + e−~t·~c
=

e−~t·~c

1 + e−~t·~c

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−~t·~ci

log p(+|t, c1:k) =
k∑

i=1

log 1

1 + e−~t·~ci
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Word2Vec

Neural Network Layout

Input

One-Hot-Encoded,
dim = 10k = |V |

Hidden

d = 300 dimensions
used as word vectors

Output

Output layer with |V | neurons
Used for training only
(not interesting for us)

Example

0

1

0

0

0.1

0.8

-0.4

0.1

0.2

0.5

0.2
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Word2Vec

Neural Network Layout

Input

One-Hot-Encoded,
dim = 10k = |V |

Hidden

d = 300 dimensions
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Output

Output layer with |V | neurons
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Word2Vec

Negative Sampling

I Negative examples
I Training a classifier needs negative examples, i.e., words that are not in the context of each

other

I Negative sampling
I For every positive tuple (t, c), we add k negative tuples
I Negative tuple (t, cn), with cn randomly selected (and t 6= cn)

I New ‘parameter’ k on this slide
I Different status than θ (the parameters we want to learn)
I Therefore: Hyperparameters
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Word2Vec

Loss Function

I We also need a loss function
I Idea:

I Maximize
I p(+|t, c) for positive samples (i.e., words that are in context of each other)
I p(−|t, cn) for negative samples (i.e., words that are not in context of each other)

L(θ) =
∑
(t,c)

log p(+|t, c) +
∑
(t,cn)

log p(−|t, cn)

θ: Concatenation of all ~t, ~c, ~cn
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Summary

Summary

I Neural networks
I Layered architecture
I Output of one layer fed into the next
I Layer contains neurons, a neuron represents a single calculation
I Activation functions

I Word2Vec training
I Two architectures
I Train NN to predict words in contexts
I Use learned weights as word vectors
I From Scratch Guide
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