Recap: Machine Learning

Naive Bayes

- Probabilistic method for classification
- Naive because we ignore feature dependencies
- Prediction model:

 $\operatorname*{argmax}_{c \in C} p(c|f_1(x), f_2(x), \dots, f_n(x))$

► Training: Count relative frequencies

Logistic Regression

- Regression method for binary classification
- Output numbers interpreted as probabilities
- Prediction model:

Decision Tree

$\begin{array}{l} \mbox{Neural Networks} \\ \mbox{Sprachverarbeitung (VL + \ddot{U})} \end{array}$

Nils Reiter

June 25, 2024

Today

Neural Networks

Word2Vec

Summary

Section 1

Neural Networks

From a Logistic Regression to a Neuron

Hypothesis function of logistic regression:

$$h(x) = \underbrace{\partial}_{(w_0 + w_1 x_1)}^{\mathbf{b}} \qquad \text{with } \sigma(x) = \frac{1}{1 + e^{-x}}$$

Maps one value to another (just like many other functions)

What is a Neural Network?

What is a Neural Network?

What is a Neural Network? Example

What is a Neural Network?

Straightforward to extend to multiple features

Figure: 1 neuron (with 2 features)

Figure: 1 neuron (with 2 features)

What is a Neural Network?

Straightforward to extend to multiple features and multiple regression nodes

Figure: A simple neural network with 1 hidden layer (and 13 parameters)

If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network

Conceptually: Applying functions in sequence: $y = f_3(f_2(f_1(x)))$ (one per layer)

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
 - Conceptually: Applying functions in sequence: $y = f_3(f_2(f_1(x)))$ (one per layer)
- Practically, a lot of the computation happens in matrices
 - Hidden layer

• Weights from input to hidden:
$$W_{1,2} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix}$$

• Biases
$$B_2 = (b_{21}, b_{22}, b_{23})$$

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
 - Conceptually: Applying functions in sequence: $y = f_3(f_2(f_1(x)))$ (one per layer)
- Practically, a lot of the computation happens in matrices

Hidden layer

• Weights from input to hidden: $W_{1,2} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix}$

• Biases
$$B_2 = (b_{21}, b_{22}, b_{23})$$

• Hidden layer computation: $f_2(X) = \sigma((W_1)(X) + B_2)$

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
 - Conceptually: Applying functions in sequence: $y = f_3(f_2(f_1(x)))$ (one per layer)
- Practically, a lot of the computation happens in matrices

Hidden layer

- Weights from input to hidden: $W_{1,2} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix}$
- Biases $B_2 = (b_{21}, b_{22}, b_{23})$
- Hidden layer computation: $f_2(X) = \sigma((W_{1,2}^{\mathsf{T}}X) + B_2)$
- Deep learning involves a lot of matrix multiplication
 - GPUs are highly optimized for this
 - Hint: Gaming-GPUs that support CUDA are also usable for deep learning

Feed-Forward Neural Networks

► The above is called a) feed-forward neural network (FFNN)

Information is fed only in forward direction

Feed-Forward Neural Networks

► The above is called a)feed-forward neural network((FFNN)

- Information is fed only in forward direction
- Configuration choices
 - Activation function (next slide)
 - Layer size: Number of neurons in each layer
 - Number of layers
 - Loss function
 - Optimizer

Training choices

- Epochs/batches
- Training status displays

demo

playground.tensorflow.org

Feed-Forward Neural Networks

All neurons of one layer have the same Popular choices:

 $\begin{array}{l} \text{logistic } y = \sigma(x) = \frac{1}{1 + e^{-x}} \rightarrow \text{squashes} \\ \text{relu } y = \max(0, x) - \text{Makes everything negative to 0} \\ \text{softmax Scales a vector such that values sum to 1 (probability distribution)} \end{array}$

Neural Networks

Training: »Back Propagation«

- Similar to gradient descent
- But
 - A lot more parameters
 - Because of multiple layers: Vanishing gradients
 - Back propagation involves a lot of multiplication
 - Factors are between zero and one
 - \Rightarrow Numbers get very small very quickly

Training: »Back Propagation«

- Similar to gradient descent
- But
 - A lot more parameters
 - Because of multiple layers: Vanishing gradients
 - Back propagation involves a lot of multiplication
 - Factors are between zero and one
 - \Rightarrow Numbers get very small very quickly
- Training choice: Batches and epochs

Training a Feedforward Neural Network I

Stochastic Gradient Descent (SGD)

- Gradient Descent
 - Apply θ to all training instances
 - Calculate loss over entire data set
- Stochastic Gradient Descent
 - Data set in random order
 - Calculate loss for every single instance, then update weights

Training a Feedforward Neural Network II

When to stop the training

- Logistic regression (last week): Stop in minimum
- In theory, that's what we want
- In practice
 - We usually are not exactly in the minimum
 - It's not important to be exactly in the minimum

 \Rightarrow Fixed number of iterations over the data set (= number of epochs)

Batches vs. Epochs

batch Number of instances used before updating weights epochs Number of iterations over all instances

Dimensions

Dimensionality of neural networks major source of confusion

Binary Classification

- ► So far: Binary classification
- Two classes, represented as 0 or 1, $Y = \{0, 1\}$

• Hypothesis function maps from n-dimensional input vector to [0;1]

 $\blacktriangleright h: \mathbb{R}^n \to [0;1]$

Multi-class Classification

- Each class is represented by one output neuron
- Three classes (e.g., positive, neutral, negative)
- Activation function of last layer: softmax
 - Similar to sigmoid (i.e., everything is in [0;1]), and
 - Everything adds up to 1

Multi-class Classification

- Each class is represented by one output neuron
- Three classes (e.g., positive, neutral, negative) •
- Activation function of last layer: softmax
 - Similar to sigmoid (i.e., everything is in [0;1]), and
 - Everything adds up to 1

Input representation: One-hot-encoding

- A vector with one dimension for each class
- The element with the correct class is 1, all others are 0
- E.g. [0, 1, 0] represents that the second class is correct

0.7

Section 2

Word2Vec

Literature basis

- Two very influential papers by Mikolov et al.
 - T. Mikolov/K. Chen/G. Corrado/J. Dean (2013) / »Efficient Estimation of Word Representations in Vector Space«. In: ArXiv e prints
 - Tomas Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). Distributed Representations of Words and Phrases and their Compositionality In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111–3119
- Software package
 - word2vec https://github.com/tmikolov/word2vec Originally published on »Google Code«

Basics

- Recap: First session
 - No interpretable dimensions
 - Dense vectors: No zeros, and much fewer dimensions than in count vectors

Basics

- Recap: First session
 - No interpretable dimensions
 - Dense vectors: No zeros, and much fewer dimensions than in count vectors
- ► Word2vec
 - Let's use the learned parameters as word vectors
 - (one parameter vector per word)
 - How to come up with a task that generates these parameters?
 - An application for neural networks

Week 10

Skip-Gram

Skip-Gram

- \blacktriangleright Context: ± 2 words around target word t
 - \ldots dogs, such as a German Shepherd or a Labrador, \ldots

c1 c2 t c3 c4

Classifier:

- Predict for any pair $(\underline{t}, \underline{c})$ wether c is really a context word for t
- Formally: $p(+|\vec{t}, \vec{c})$
 - \blacktriangleright Probability of t and c being positive examples, using the respective vectors

Skip-Gram

- \blacktriangleright Context: ± 2 words around target word t
 - ... dogs, such as a German Shepherd or a Labrador, ...

c1 c2 t c3 c4

Classifier:

- \blacktriangleright Predict for any pair (t, c) wether c is really a context word for t
- Formally: $p(+|\vec{t}, \vec{c})$
 - \blacktriangleright Probability of t and c being positive examples, using the respective vectors
- How can we determine probability, based on vectors?
- Vector similarity \rightarrow probability
 - Measure for similarity of vectors? Dot product
 - Dot product to probability? Logistic function
 - »a word is likely to occur near the target if its embedding is similar to the target embedding«

Jurafsky/Martin (2023, 18 f.)

When are vectors similar?

- Operation that takes two vectors and returns a similarity score
- Linear algebra: dot product
 - A.k.a. scalar product, inner product, Skalarprodukt, Punktprodukt, inneres Produkt

Skip-gram

Notation

t, c: words \vec{t} , \vec{c} : vectors for the words

$$p(+|t,c) = \sigma(\vec{t} \cdot \vec{c}) = \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}}}$$

$$p(-|t,c) = \underline{1 - \sigma(\vec{t} \cdot \vec{c})} = 1 - \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}}} = \frac{e^{-\vec{t} \cdot \vec{c}}}{1 + e^{-\vec{t} \cdot \vec{c}}}$$

Skip-gram

Notation

t, *c*: words

 \vec{t} , \vec{c} : vectors for the words

$$\begin{split} p(+|t,c) &= \sigma(\vec{t} \cdot \vec{c}) = \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}}} \\ p(-|t,c) &= 1 - \sigma(\vec{t} \cdot \vec{c}) = 1 - \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}}} = \frac{e^{-\vec{t} \cdot \vec{c}}}{1 + e^{-\vec{t} \cdot \vec{c}}} \end{split}$$

but the context consists of more than one word!

Skip-gram

Notation

t, *c*: words

 \vec{t} , \vec{c} : vectors for the words

$$p(+|t,c) = \sigma(\vec{t} \cdot \vec{c}) = \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}}}$$

$$p(-|t,c) = 1 - \sigma(\vec{t} \cdot \vec{c}) = 1 - \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}}} = \frac{e^{-\vec{t} \cdot \vec{c}}}{1 + e^{-\vec{t} \cdot \vec{c}}}$$

but the context consists of more than one word! Assumption: They are independent, allowing multiplication

Skip-gram

Notation

t, *c*: words

 \vec{t} , \vec{c} : vectors for the words

$$p(+|t,c) = \sigma(\vec{t} \cdot \vec{c}) = \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}}}$$

$$p(-|t,c) = 1 - \sigma(\vec{t} \cdot \vec{c}) = 1 - \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}}} = \frac{e^{-\vec{t} \cdot \vec{c}}}{1 + e^{-\vec{t} \cdot \vec{c}}}$$

but the context consists of more than one word! Assumption: They are independent, allowing multiplication

$$p(+|t, c_{1:k}) = \prod_{i=1}^{k} \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}_i}}$$
$$\log p(+|t, c_{1:k}) = \sum_{\text{Week } 1 \neq j=1}^{k} \log \frac{1}{1 + e^{-\vec{t} \cdot \vec{c}_i}}$$

Neural Network Layout

One-Hot-Encoded, dim = 10k = |V| $d=\,300 \; {\rm dimensions} \\ {\rm used} \; {\rm as \; word \; vectors} \\$

Output layer with |V| neurons Used for training only (not interesting for us)

Negative Sampling

- Negative examples
 - Training a classifier needs negative examples, i.e., words that are not in the context of each other

Negative Sampling

- Negative examples
 - Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
 - For every positive tuple (t, c), we add k negative tuples
 - ▶ Negative tuple (t, c_n) , with c_n randomly selected (and $t \neq c_n$)

Negative Sampling

- Negative examples
 - Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
 - For every positive tuple (t, c), we add k negative tuples
 - ▶ Negative tuple (t, c_n) , with c_n randomly selected (and $t \neq c_n$)
- New 'parameter' k on this slide
 - Different status than θ (the parameters we want to learn)
 - Therefore: Hyperparameters

Loss Function

- We also need a loss function
- ► Idea:
 - Maximize
 - p(+|t, c) for positive samples (i.e., words that are in context of each other) $p(-|t, c_n)$ for negative samples (i.e., words that are not in context of each other)

Loss Function

- We also need a loss function
- Idea:
 - Maximize
 - ▶ p(+|t, c) for positive samples (i.e., words that are in context of each other)
 - ▶ $p(-|t, c_n)$ for negative samples (i.e., words that are not in context of each other)

$$L(\theta) = \sum_{(t,c)} \log p(+|t,c) + \sum_{(t,c_n)} \log p(-|t,c_n)$$

Loss Function

- We also need a loss function
- Idea:
 - Maximize
 - ▶ p(+|t, c) for positive samples (i.e., words that are in context of each other)
 - ▶ $p(-|t, c_n)$ for negative samples (i.e., words that are not in context of each other)

$$L(\theta) = \sum_{(t,c)} \log p(+|t,c) + \sum_{(t,c_n)} \log p(-|t,c_n)$$

 θ : Concatenation of all \vec{t} , \vec{c} , \vec{c}_n

Section 3

Summary

Summary

Neural networks

- Layered architecture
- Output of one layer fed into the next
- Layer contains neurons, a neuron represents a single calculation
- Activation functions

Word2Vec training

- Two architectures
- Train NN to predict words in contexts
- Use learned weights as word vectors
- From Scratch Guide

References I

Jurafsky, Dan/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of Janaury 7, 2023. Prentice Hall. URL: https://web.stanford.edu/~jurafsky/slp3/.
 Mikolov, T./K. Chen/G. Corrado/J. Dean (2013). »Efficient Estimation of Word Representations in Vector Space«. In: ArXiv e-prints.
 Mikolov, Tomas/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). »Distributed Representations of Words and Phrases and their Compositionality«. In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111–3119.