Recap: Machine Learning

$$
\begin{array}{|c}
\hline \text { Decision Tree } \\
\downarrow \text { Logistic Regression }
\end{array}
$$

Naive Bayes

- Probabilistic method for classification
- Naive because we ignore feature dependencies
- Prediction model:

$$
\underset{c \in C}{\operatorname{argmax}} p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

- Training: Count relative frequencies
- Regression method for binary classification
- Output numbers interpreted as probabilities
- Prediction model:

- Training: Gradient descent with loss function

Neural Networks
 Sprachverarbeitung (VL + Ü)

Nils Reiter

June 25, 2024

Today

Neural Networks

Word2Vec

Summary

Section 1

Neural Networks

From a Logistic Regression to a Neuron

- Hypothesis function of logistic regression:
- Maps one value to another (just like many other functions)

What is a Neural Network?

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

What is a Neural Network?

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

What is a Neural Network?

Example

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

What is a Neural Network?

Example

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

What is a Neural Network?

Example

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

What is a Neural Network?

Example

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

What is a Neural Network?

Straightforward to extend to multiple features

Figure: 1 neuron (with 2 features)

What is a Neural Network?

Straightforward to extend to multiple features

Figure: 1 neuron (with 2 features)

What is a Neural Network?

Straightforward to extend to multiple features and multiple regression nodes

Figure: A simple neural network with 1 hidden layer (and 13 parameters)

Prediction Model: Forward Pass

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
- Conceptually: Applying functions in sequence: $y=f_{3}\left(f_{2}\left(f_{1}(x)\right)\right)$ (one per layer)

Prediction Model: Forward Pass

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
- Conceptually: Applying functions in sequence: $y=f_{3}\left(f_{2}\left(f_{1}(x)\right)\right)$ (one per layer)
- Practically, a lot of the computation happens in matrices
- Hidden layer
- Weights from input to hidden: $W_{1,2}=\left[\begin{array}{lll}w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23}\end{array}\right]$
- Biases $B_{2}=\left(b_{21}, b_{22}, b_{23}\right)$

Prediction Model: Forward Pass

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
- Conceptually: Applying functions in sequence: $y=f_{3}\left(f_{2}\left(f_{1}(x)\right)\right)$ (one per layer)
- Practically, a lot of the computation happens in matrices
- Hidden layer
- Weights from input to hidden: $W_{1,2}=\left[\begin{array}{lll}w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23}\end{array}\right]$
- Biases $B_{2}=\left(b_{21}, b_{22}, b_{23}\right)$
- Hidden layer computation: $f_{2}(X)=\sigma\left(\left(W_{1}^{\top}\right)_{2}(X)+B\right)$

Prediction Model: Forward Pass

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
- Conceptually: Applying functions in sequence: $y=f_{3}\left(f_{2}\left(f_{1}(x)\right)\right)$ (one per layer)
- Practically, a lot of the computation happens in matrices
- Hidden layer
- Weights from input to hidden: $W_{1,2}=\left[\begin{array}{lll}w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23}\end{array}\right]$
- Biases $B_{2}=\left(b_{21}, b_{22}, b_{23}\right)$
- Hidden layer computation: $f_{2}(X)=\sigma\left(\left(W_{1,2}^{\top} X\right)+B_{2}\right)$
- Deep learning involves a lot of matrix multiplication
- GPUs are highly optimized for this
- Hint: Gaming-GPUs that support CUDA are also usable for deep learning

Feed-Forward Neural Networks

- The above is called a ıfeed-forward neural networkı (FFNN)
- Information is fed only in forward direction

Feed-Forward Neural Networks

- The above is called a ıfeed-forward neural networkı (FFNN)
- Information is fed only in forward direction
- Configuration choices
- Activation function (next slide)
- Layer size: Number of neurons in each layer
- Number of layers
- Loss function
- Optimizer
- Training choices
- Epochs/batches
- Training status displays

demo

playground.tensorflow.org

All neurons of one layer have the same Populan choices:

1ogistic $y=\sigma(x)=\frac{1}{1+e^{-x}}$ - squashes everything to a value between 0 and 1 relu $y=\max (0, x)-$ Makes everything negative to 0
softmax Scales a vector such that values sum to 1 (probability distribution)

Training: »Back Propagation «

- Similar to gradient descent
- But
- A lot more parameters
- Because of multiple layers: Vanishing gradients
- Back propagation involves a lot of multiplication
- Factors are between zero and one
\Rightarrow Numbers get very small very quickly

Training: „Back Propagation«

- Similar to gradient descent
- But
- A lot more parameters
- Because of multiple layers: Vanishing gradients
- Back propagation involves a lot of multiplication
- Factors are between zero and one
\Rightarrow Numbers get very small very quickly
- Training choice: Batches and epochs

Training a Feedforward Neural Network I

Stochastic Gradient Descent (SGD)

- Gradient Descent
- Apply θ to all training instances
- Calculate loss over entire data set
- Stochastic Gradient Descent
- Data set in random order
- Calculate loss for every single instance, then update weights

Training a Feedforward Neural Network II

When to stop the training

- Logistic regression (last week): Stop in minimum
- In theory, that's what we want
- In practice
- We usually are not exactly in the minimum
- It's not important to be exactly in the minimum
\Rightarrow Fixed number of iterations over the data set (= number of epochs)

Batches vs. Epochs

batch Number of instances used before updating weights epochs Number of iterations over all instances

Dimensions

- Dimensionality of neural networks major source of confusion

Dimensions

- Dimensionality of neural networks major source of confusion
- In this example
- Single input object represented with two numbers ($=1 \mathrm{D}$)
- Output is a single number
- Entire input data set: 2D (because multiple instances)

Binary Classification

- So far: Binary classification
- Two classes, represented as 0 or $1, Y=\{0,1\}$
- Hypothesis function maps from n-dimensional input vector to $[0 ; 1]$
- $h: \mathbb{R}^{n}$ 乙 $\left.0 ; 1\right]$

Multi-class Classification

- Each class is represented by one output neuron
- Three classes (e.g., positive, neutral, negative)
- Activation function of last layer: softmax
- Similar to sigmoid (i.e., everything is in $[0 ; 1]$), and
- Everything adds up to 1

Multi-class Classification

- Each class is represented by one output neuron
- Three classes (e.g., positive, neutral, negative)
- Activation function of last layer: softmax
- Similar to sigmoid (i.e., everything is in $[0 ; 1]$), and
- Everything adds up to 1
- Input representation: One-hot-encoding
- A vector with one dimension for each class
- The element with the correct class is 1 , all others are 0
- E.g. $0,1,0]$ depresents that the second class is correct

Section 2

Word2Vec

Literature basis

- Two very influential papers by Mikolov et al.
- T. Mikolov/K. Chen/G. Corrado/J. Dean (2013). »Efficient Estimation of Word Representations in Vector Space«. In: ArXive prints
- Tomas Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). nDistributed Representations of Words and Phrases and their Compositionality «. In: Advances in Neural Information Processing Systems 26. Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111-3119
- Software package
- word2vec - https://github.com/tmikolov/word2vec Originally published on »Google Code«

Basics

- Recap: First session
- No interpretable dimensions
- Dense vectors: No zeros, and much fewer dimensions than in count vectors

Basics

- Recap: First session
- No interpretable dimensions
- Dense vectors: No zeros, and much fewer dimensions than in count vectors
- Word2vec
- Let's use the learned parameters as word vectors
- (one parameter vector per word)
- How to come up with a task that generates these parameters?
- An application for neural networks

Two tasks

Continuous Bag of Words (CBOW)

Context words used to predict one word

Skip-Gram

One word used to predict its context

Skip-Gram

- Context: ± 2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ... c1 c

Skip-Gram

- Context: ± 2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ... c1 c2 t c3 c4
- Classifier:
- Predict for any pair $(\underline{t}, \underline{c})$ wether c is really a context word for t
- Formally: $p(+\mid \vec{t}, \vec{c})$
- Probability of t and c being positive examples, using the respective vectors

Skip-Gram

- Context: ± 2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ... c1 c2 t c3 c4
- Classifier:
- Predict for any pair (t, c) wether c is really a context word for t
- Formally: $p(+\mid \vec{t}, \vec{c})$
- Probability of t and c being positive examples, using the respective vectors
- How can we determine probability, based on vectors?
- Vector similarity \rightarrow probability
- Measure for similarity of vectors? Dot product
- Dot product to probability? Logistic function
- "a word is likely to occur near the target if its embedding is similar to the target embedding"

When are vectors similar?

- Operation that takes two vectors and returns a similarity score
- Linear algebra: dot product
- A.k.a. scalar product, inner product, Skalarprodukt, Punktprodukt, inneres Produkt

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \varangle(\vec{a}, \vec{b}) \\
& =\sum_{i=1}^{N} \underline{a_{i} b_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& {[0,1,3] } \\
& {[5,4,7] } \\
= & 0.5+4.1+3.7 \\
= & 25
\end{aligned}
$$

Skip-gram
Notation
t, c : words
\vec{t}, \vec{c} : vectors for the words

$$
\begin{aligned}
& p(+\mid t, c)=\frac{\downarrow}{\sigma(\vec{t} \cdot \vec{c})}=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=\underline{1-\sigma(\vec{t} \cdot \vec{c})}=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

Skip-gram

Notation

t, c : words
\vec{t}, \vec{c} : vectors for the words

$$
\begin{aligned}
& p(+\mid t, c)=\sigma(\vec{t} \cdot \vec{c})=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=1-\sigma(\vec{t} \cdot \vec{c})=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

but the context consists of more than one word!

Skip-gram

Notation

t, c : words
\vec{t}, \vec{c} : vectors for the words

$$
\begin{aligned}
& p(+\mid t, c)=\sigma(\vec{t} \cdot \vec{c})=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=1-\sigma(\vec{t} \cdot \vec{c})=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

Skip-gram

Notation

t, c : words
\vec{t}, \vec{c} : vectors for the words

$$
\begin{aligned}
& p(+\mid t, c)=\sigma(\vec{t} \cdot \vec{c})=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=1-\sigma(\vec{t} \cdot \vec{c})=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

$$
\begin{aligned}
p\left(+\mid t, c_{1: k}\right) & =\prod_{i=1}^{k} \frac{1}{1+e^{-\vec{t} \cdot \vec{c}_{i}}} \\
\log p\left(+\mid t, c_{1: k}\right) & =\sum_{\text {Week }}^{=} \log \frac{1}{1+e^{-\vec{t} \cdot \vec{c}_{i}}}
\end{aligned}
$$

Neural Network Layout

Word2Vec C

Neural Network Layout

Input Hidden Output Example

One-Hot-Encoded,
$\operatorname{dim}=10 k=|V|$
$d=300$ dimensions used as word vectors

Output layer with $|V|$ neurons Used for training only (not interesting for us)

Negative Sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other

Negative Sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple $\left(t, c_{n}\right)$, with c_{n} randomly selected (and $t \neq c_{n}$)

Negative Sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple $\left(t, c_{n}\right)$, with c_{n} randomly selected (and $t \neq c_{n}$)
- New 'parameter' k on this slide
- Different status than θ (the parameters we want to learn)
- Therefore: Hyperparameters

Loss Function

- We also need a loss function
- Idea:
- Maximize
$-p(+\mid t, c)$ for positive samples (i.e., words that are in context of each other)
- $p\left(-\mid t, c_{n}\right)$ for negative samples (i.e., words that are not in context of each other)

Loss Function

- We also need a loss function
- Idea:
- Maximize
- $p(+\mid t, c)$ for positive samples (i.e., words that are in context of each other)
- $p\left(-\mid t, c_{n}\right)$ for negative samples (i.e., words that are not in context of each other)

$$
L(\theta)=\sum_{(t, c)} \log p(+\mid t, c)+\sum_{\left(t, c_{n}\right)} \underline{\log } p\left(-\mid t, c_{n}\right)
$$

Loss Function

- We also need a loss function
- Idea:
- Maximize
- $p(+\mid t, c)$ for positive samples (i.e., words that are in context of each other)
- $p\left(-\mid t, c_{n}\right)$ for negative samples (i.e., words that are not in context of each other)

$$
L(\theta)=\sum_{(t, c)} \log p(+\mid t, c)+\sum_{\left(t, c_{n}\right)} \log p\left(-\mid t, c_{n}\right)
$$

θ : Concatenation of all $\vec{t}, \vec{c}, \vec{c}_{n}$

Section 3

Summary

Summary

- Neural networks
- Layered architecture
- Output of one layer fed into the next
- Layer contains neurons, a neuron represents a single calculation
- Activation functions
- Word2Vec training
- Two architectures
- Train NN to predict words in contexts
- Use learned weights as word vectors
- From Scratch Guide

References I

目 Jurafsky，Dan／James H．Martin（2023）．Speech and Language Processing．3rd ed．Draft of Janaury 7，2023．Prentice Hall．URL：https：／／web．stanford．edu／～jurafsky／slp3／．
囯 Mikolov，T．／K．Chen／G．Corrado／J．Dean（2013）．»Efficient Estimation of Word Representations in Vector Space«．In：ArXiv e－prints．
國 Mikolov，Tomas／Ilya Sutskever／Kai Chen／Greg S Corrado／Jeff Dean（2013）．„Distributed Representations of Words and Phrases and their Compositionality«．In：Advances in Neural Information Processing Systems 26．Ed．by
C．J．C．Burges／L．Bottou／M．Welling／Z．Ghahramani／K．Q．Weinberger．Curran Associates，Inc．，pp．3111－3119．

