
Recap

I Neural networks
I Layered architecture
I Output of one layer fed into the next
I Layer contains neurons, a neuron represents a single calculation
I Activation functions

I Word2Vec training
I Two architectures
I Train NN to predict words in contexts
I Use learned weights as word vectors
I From Scratch Guide
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Practical Deep Learning

Libraries

I Deep learning in python rests on several independent libraries
I numpy Provides efficient matrices and arrays
I pandas Convenient working with tabular data (inspired by data.frames in R)
I scikit-learn ›Classical‹ machine learning (not deep learning)
I tensorflow Basic, low-level machine learning and math
I keras High-level deep learning (built on top of tensorflow)
I pytorch Newer alternative to tensorflow

I Libraries are well integrated

I Documentation is fragmented – important links:
I https://keras.io/api/
I https://pandas.pydata.org/docs/reference/index.html
I https://scikit-learn.org/stable/modules/classes.html
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Practical Deep Learning

keras

I https://keras.io
I High-level Python API for deep learning
I Built on top of tensorflow
I Pattern

1. Layout the network
2. Set hyper parameters
3. Run training
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Practical Deep Learning

Configuration

Listing 1: Sequential API
1 # model layout
2 model = Sequential()
3 model.add(...)
4 model.add(...)
5
6 # hyperparameter specification
7 model.compile(loss=...,
8 optimizer=...)
9

10 # training
11 model.fit(..., epochs=...,
12 batch_size=...)
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Practical Deep Learning

Configuration
Two most basic layer types

I Dense: »Just your regular densely-connected NN layer.«
I https://keras.io/api/layers/core_layers/dense/

1 layer = Dense(3, # number of neurons
2 activation = activations.sigmoid, # activation function
3 name = "dense layer 7" # useful for debugging/visualisation
4 ... # more options, see docs
5 )

I Input: Marks layers to accept data
I https://keras.io/api/layers/core_layers/input/

1 layer = Input(shape=(15,) # number of input dimensions/features
2 name = "input layer", # useful for debugging/visualisation
3 ... # see docs
4 )
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Practical Deep Learning

Shape

I Description of the dimensionality of the data
I A vector of numbers, giving the number of elements for each dimension
I Python tuple

I List with fixed length: x = (5,3,1) #a tuple
� Tuple with one element printed as (5,) or 5

1 x = np.zeros(5) # array([0., 0., 0., 0., 0.])
2 x.shape # returns (5,)
3 x = np.zeros((3,5))
4 # array([[0., 0., 0., 0., 0.],
5 # [0., 0., 0., 0., 0.],
6 # [0., 0., 0., 0., 0.]])
7 x.shape # returns (3,5)
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Overfitting



Overfitting

Introduction

I ›Fitting‹: Train a model on data (= »fit« it to the data)
I Underfitting: The model is not well fitted to the data, i.e., accuracy is low
I Overfitting: The model is fitted too well to the data, i.e., accuracy is high

Why is overfitting a problem?

I We want to the model to behave well »in the wild«
I It needs to generalize from training data
I If it is overfitted, it works very well on training data, and very badly on test data
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Overfitting

Intuition
' Learning by heart

Example
I Learning by heart gets you through the test

I I.e., systems achieve high performance

I You are unable to apply your knowledge to situations not exactly as in the test
I I.e., system performance is lower in the wild

Figure: Führerscheinprüfung
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Overfitting

Real-World Examples

I Machine learning for COVID-19 detection on chest scans Roberts et al. (2021)
I »none of the models identified are of potential clinical use due to methodological flaws

and/or underlying biases« Roberts et al. (2021, 200)
I »Using a public dataset alone without additional new data can lead to community-wide

overfitting on this dataset. Even if each individual study observes sufficient precautions to
avoid overfitting, the fact that the community is focused on outperforming benchmarks on a
single public dataset encourages overfitting.« Roberts et al. (2021, 212)

I Collection of real-world examples of overfitting: https://stats.stackexchange.com/
questions/128616/whats-a-real-world-example-of-overfitting
I Also note the comments and discussions

Week 10 12 / 36

https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting
https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting
Nils Reiter



Overfitting

Real-World Examples

I Machine learning for COVID-19 detection on chest scans Roberts et al. (2021)
I »none of the models identified are of potential clinical use due to methodological flaws

and/or underlying biases« Roberts et al. (2021, 200)
I »Using a public dataset alone without additional new data can lead to community-wide

overfitting on this dataset. Even if each individual study observes sufficient precautions to
avoid overfitting, the fact that the community is focused on outperforming benchmarks on a
single public dataset encourages overfitting.« Roberts et al. (2021, 212)

I Collection of real-world examples of overfitting: https://stats.stackexchange.com/
questions/128616/whats-a-real-world-example-of-overfitting
I Also note the comments and discussions

Week 10 12 / 36

https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting
https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting


Overfitting

Overfitting and Neural Networks

� Overfitting is not a purely technical problem – no purely technical solution
Classical machine learning
I Feature selection can avoid relying on irrelevant features
I But this is only one source for overfitting

Neural networks are overfitting machines
I Layered architecture ⇒ Any relation between x and y can be learned

I including a fixed set of if/else rules

Techniques against overfitting (besides critical thinking and use of brain)

I Regularization
I Dropout

Week 10 13 / 36



Overfitting

Overfitting and Neural Networks

� Overfitting is not a purely technical problem – no purely technical solution
Classical machine learning
I Feature selection can avoid relying on irrelevant features
I But this is only one source for overfitting

Neural networks are overfitting machines
I Layered architecture ⇒ Any relation between x and y can be learned

I including a fixed set of if/else rules

Techniques against overfitting (besides critical thinking and use of brain)

I Regularization
I Dropout

Week 10 13 / 36



Subsection 1

Regularization



Overfitting

Intuition

Figure: Visual representation of regularization results (Skansi, 2018, 108)
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Overfitting

Formalization

I Formally, regularization is a parameter added to the loss

J (~w) = Joriginal(~w) + R
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Overfitting

L2-Regularization

L2-Norm (a. k. a. Euclidean norm) Tikhonov (1963)
I Given a vector ~x = (x1, x2, . . . , xn),

its L2 norm is L2(~x) =
√

x2
1 + x2

2 + · · ·+ x2
n = ||~x||2

I In practice, we drop the square root and calculate L2 norm of the weight vector during
training:

(||~w||2)2 =
n∑

i=0

w2
i

I Regularization rate λ: Factor that expresses how much we want (another hyperparameter)

J (~w) = Joriginal(~w) +
λ

n
||w||22 with n for the batch size
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Overfitting

L2-Regularization

I What does it do?

I If weights ~w are large: Loss is increased more
I Large weights are only considered if the increased loss is »worth it«, i.e., if it is

counterbalanced by a real error reduction
I Small weights are preferred
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Subsection 2

Dropout



Overfitting

Dropout

I Regularization: Numerically combatting overfitting
I Dropout: Structurally combatting overfitting Hinton et al. (2012)

I A new hyperparameter π = [0; 1]
I In each epoch, every weight is set to zero with a probability of π

[Dropout] prevents complex co-adaptations in which a feature detector is only helpful
in the context of several other specific feature detectors. Instead, each neuron learns
to detect a feature that is generally helpful for producing the correct answer given the
combinatorially large variety of internal contexts in which it must operate.

Hinton et al. (2012, 1)
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Overfitting

Dropout

Example

Figure: Dropout π = 0.5, visualized
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Overfitting

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 0

Week 10 21 / 36



Overfitting

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 1
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Overfitting

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 2
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Sequence Labeling



Sequence Labeling

Motivation

I Language works sequentially
I Word meaning depends on context

I Feedforward neural networks
I One instance at a time
I E.g., one sentence with four tokens � positive/negative

I Conceptually not adequate for natural language
I Length of influencing context varies
I Recurrent neural networks are one solution to this problem

Week 10 23 / 36



Sequence Labeling

Motivation

I Language works sequentially
I Word meaning depends on context

I Feedforward neural networks
I One instance at a time
I E.g., one sentence with four tokens � positive/negative

I Conceptually not adequate for natural language
I Length of influencing context varies
I Recurrent neural networks are one solution to this problem

Week 10 23 / 36



Sequence Labeling

Motivation

I Language works sequentially
I Word meaning depends on context

I Feedforward neural networks
I One instance at a time
I E.g., one sentence with four tokens � positive/negative

I Conceptually not adequate for natural language
I Length of influencing context varies

I Recurrent neural networks are one solution to this problem

Week 10 23 / 36



Sequence Labeling

Motivation

I Language works sequentially
I Word meaning depends on context

I Feedforward neural networks
I One instance at a time
I E.g., one sentence with four tokens � positive/negative

I Conceptually not adequate for natural language
I Length of influencing context varies
I Recurrent neural networks are one solution to this problem

Week 10 23 / 36



Sequence Labeling

Sequence Labeling

I So far: Classification
I Sequence labeling

I Special case of classification
I Instances are organized sequentially and not independent of each other

I I.e.: The prediction of a class for one item influences the next

Example (Part of speech tagging)

I »the dog barks« → »DET NN VBZ«
I Predicting »DET VBZ NN« is extremely unlikely, because verbs usually don’t follow

determiners
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Sequence Labeling

Towards Recurrent Neural Networks

Feature values of
instance ~x = (x1, x2)

Output for instance ~x

b31

b21

b22

b23

x1

x2

y

Figure: A feedforward neural network with 1 hidden layer (same picture as before)
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Sequence Labeling

Towards Recurrent Neural Networks

To work with sequences, we need to include the sequence into the model

Notation
X = (~X1, ~X2, . . . ) The input data set containing a sequence of instances

(e.g., a sequence of words)
~Xi = (x1, x2, . . . ) One instance with feature values

(e.g., embedding dimensions)
Yi Output for instance Xi
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Sequence Labeling

Recurrent Neural Networks
Example

y

x1

x2

Xi
b1

b2

b3
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Sequence Labeling
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Sequence Labeling

Recurrent Neural Networks
I FFNN, CNN: Weights between neurons
I RNN: Additional weights for recurrent connections

Input shape

I Before: Network gets at one object at a time, potentially with multiple features
I Now: Network gets sequence of objects at a time, each one potentially with multiple

features
I RNN layers need 2D input:

I Length of input sequences (if needed, padded)
I Number of features (dimensions)

I (this is where embeddings would go)
I For training, we need multiple sequences, making the training data 3D
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Sequence Labeling

Demo

I Simple task: Learn to count distances
I Given a sequence of 1s and 0s, predict a 1 two steps after an input-1
I E.g.: »010010001« becomes »000100100«
I Model has to learn to count the distance
I Training data can easily be generated

demo
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Sequence Labeling

Implementation in keras

I tf.keras.layers.SimpleRNN

I Documentation: https://keras.io/api/layers/recurrent_layers/simple_rnn/
Selected parameters:

I recurrent_dropout=0.0 Dropout for recurrent links
I return_sequences=False Wether to continue the network with the entire sequence or just the

last element

1 model.add(layers.SimpleRNN(...))
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Sequence Labeling

BIO Scheme
I POS-Tagging is easy, because structurally simple: Each token is assigned to one class
I Named entity recognition (and many other tasks) is complicated

I Not every token is part of a named entity (NE)
I Many named entities span multiple tokens
I We distinguish NEs based on the ontological type of the referent

I PERson, ORGanization, LOCation, …

I BIO scheme
I How to represent NE annotations token-wise
I Each token gets a label

I B: Beginning of a NE
I I: Inside of a NE
I O: Outside of a NE (the majority of tokens)

I Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence
I »…hat Peter Paulus Maria Müller geküsst« → »O B-PER I-PER B-PER I-PER O«
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Sequence Labeling
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Sequence Labeling

Directions

I In a regular RNN, the sequence is processed in one direction
I Simple extension: two recurrent layers for both directions

1 model.add(layers.Bidirectional(layers.SimpleRNN(...)))
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