
Recap

I Neural networks
I Layered architecture
I Output of one layer fed into the next
I Layer contains neurons, a neuron represents a single calculation
I Activation functions

I Word2Vec training
I Two architectures
I Train NN to predict words in contexts
I Use learned weights as word vectors
I From Scratch Guide
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Introduction

I (Recurrent) neural networks provide building blocks
I Powerful machine learning, usable for many different tasks
I RNN/Bi-LSTM have taken over NLP landscape – 2015–2018

Current State of the Art: Transformer architecture
I Encoder-Decoder-Network Sutskever et al. (2014)
I Attention layer Vaswani et al. (2017)
I No recurrent layers – entire input is processed at once with positional embeddings

I I.e., a fixed number of tokens is fed into the network
I New training paradigm(s) Devlin et al. (2019)

I BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
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Training Paradigm



Training Paradigm

Training a Neural Network
I Model training

1 model.fit(x_train, y_train, ...)

I When is training done?
I After a number of epochs
I (or, theoretically, when we reach parameters with minimal loss)
I I.e.: It’s our choice!
I Nothing prevents us from adding additional epochs after the training

I What happens when we supply different data sets?
1 model.fit(x1_train, y1_train, epochs=100)
2 model.fit(x2_train, y2_train, epochs=50)

I Nothing exciting: The model continues to be trained, but with a different dataset🤯
I Does the model care if the data sets are about the same task? No. 🤯🤯
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Training Paradigm

Training on Different Datasets

I Not possible with decision trees, naïve Bayes, …
I Neural networks: No problem
I Why do we want to do that?

Training paradigmas
I Classical: Train data set, evaluate, be happy (or not)
I Neural: Pre-training/Fine-tuning paradigma

I Pre-train a model on some task
I Fine-tune it on another
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Training Paradigm

Pre-Training and Fine-Tuning

I BERT models are trained on large data sets
I Training one from scratch requires significant resources (time/money)
I Pre-trained models are shared freely
I Recipe: Take a pre-trained model and fine-tune it on your task

I Pre-trained model contains an abstract language representation

I Fine-tuning
I Any language-related task!
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Training Paradigm

BERT Training Tasks

Masked Language Modeling (MLM)
I Sentence-wise
I 15% of the tokens are »masked« by a special token
I Model predicts these, having access to all other tokens

Next sentence prediction (NSP)
I Two (masked) sentences are concatenated
I Model has to predict wether second sentence follows on the first or not
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Encoder-Decoder-Networks

Introduction
Se

qu
en

ce

X1 Y1

X2 Y2

X3 Y3

Figure: Neural network with a
recurrent layer

I Each X value leads to a Y value
I Network has no way to skip a sequence

element
I Many real world sequence labeling tasks

are n-to-m-tasks
I n elements in one sequence are

associated with m element in the other
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Encoder-Decoder-Networks

Encoder-Decoder-Architecture

I Network has two parts:
I Encoder maps from input data to an internal representation
I Internal representation optionally processed by a regular dense layer
I Decoder maps from internal representation to the output

I Internal representation
I Use the output of last recurrent neuron

I Or internal state of last recurrent cell
I Some vector, not interpretable
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Encoder-Decoder-Networks

Encoder-Decoder-Architecture
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Encoder-Decoder-Networks

Encoder-Decoder-Architecture in Keras

I Encoder
I Regular input layer
I Recurrent layer with return_sequences=False

I Because we don’t want a sequence as output, but just the output of the last cell
I Decoder

I Every output sequence element gets the internal representation as input
I Thus, it needs to be repeated with the RepeatVector() layer
I This is just copying the vector

I Recurrent layer with return_sequences=True
I Because now, we want the sequence

I Output layer as before
I With one-hot-encoding for multi-class problems
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Encoder-Decoder-Networks

Encoder-Decoder-Architecture in Keras

Listing 1: The Code
1 model = models.Sequential()
2 # Encoder
3 model.add(layers.Input(shape=(INPUT_LENGTH ,)))
4 model.add(layers.Embedding(input_dim=number_of_symbols, output_dim=64,))
5 model.add(layers.LSTM(64, return_sequences=False))
6
7 # Copy the internal representation (optional)
8 model.add(layers.RepeatVector(OUTPUT_LENGTH))
9

10 # Decoder
11 model.add(layers.LSTM(32, return_sequences=True))
12 model.add(layers.Dense(number_of_symbols*2, activation='softmax'))
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Section 3

Positional Embeddings
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Positional Embeddings

Introduction
I Transformer architecture does not use recurrent connections
I Entire input is consumed at once

I with dummy tokens, if the sentence is too short
I BERT context window: 512 tokens

I I.e.: 512 input neurons, each taking one token index
I But the model still needs to learn something about relative positions

Example

I Input 1: »Cologne is also part of the Rhine-Ruhr metropolitan region, the second biggest
metropolitan region by GDP in the European Union.«

I Input 2: »The second biggest metropolitan region by GDP in the European Union is the
Rhine-Ruhr region.«

I Model should learn that »biggest« and »region« are related, even though they are in
different positions

� Positional Embeddings
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Positional Embeddings

BERT Input

Figure: BERT input representation (Devlin et al., 2019)
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Positional Embeddings

Position Embeddings

I Each position is encoded as a vector
I I.e., position 1 has a vector that is different from position 2, etc.

I Position vectors have the same length as the token vectors (allowing summation)
I After token embeddings and position embeddings have been added, they represent a token at

it’s position
I BERT: Position embeddings are learned, just like other embeddings
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Attention



Attention

Figure: Examples of attending to the correct object (Bahdanau et al., 2015)
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Attention

Figure: Attention paid by a neural machine translation network (Bahdanau et al., 2015)
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Attention

Introduction

I A mechanism to allow the network to learn what to focus on
I Idea: Not all parts of the input are equally important

I MT: »la zone économique européenne« → »the European Economic Area«, irrespective of
context

I Mirrows human reading/translating activities
I Developed for machine translation, then applied to other tasks
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Attention

From Encoder-Decoder to Attention
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Section 5

Practical Things and Future Trends



Hugging Face



Practical Things and Future Trends

Introduction

I An AI company that provides
I A Python library for transformer models

I Since 2.0 compatible with tensorflow/keras and PyTorch
I A platform to share BERT models (e.g., for different languages) and/or data sets
I Some paid services

Installation
1 pip install transformers
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Practical Things and Future Trends

Code

1 import tensorflow as tf
2 from transformers import TFAutoModelForSequenceClassification
3
4 # Load model as keras model
5 model = TFAutoModelForSequenceClassification
6 .from_pretrained("bert-base-cased", num_labels=2)
7
8 # do the usual keras stuff
9 model.compile(...)

10
11 # fine-tuning
12 model.fit(...)

https://huggingface.co/transformers/training.html
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Practical Things and Future Trends

Using Large Language Models

I Extracting contextual embeddings
I s12-get-bert-features.py

I Predicting the next token / filling in blanks
I s12-unmasker.py

I Fine-Tuning to a specific task (using annotated data)
I s12-fine-tune-text-classification.py

I Zero-Shot classification (Classify without fine-tuning!)
I s12-zero-shot-classification.py

I Few-Shot classification (= »in-context-learning«)
I The new paradigm? Brown et al. (2020)
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