
SPRACHVERARBEITUNG: ÜBUNG
SoSe 2024

Janis Pagel

Institut für Digital Humanities 2024-04-25

01

REGULAR EXPRESSIONS (REGEX)

Introduction

Formal expressions to describe a (finite or infinite) set of strings
Implemented in many (if not all) programming languages

Careful: Syntax of regex is often different between different programming languages
There are many things to say about regex from a theoretcial point of view (formal languages, finite state
automata, Chomsky hierarchy, computability, etc.), but this exercise will focus on the practical aspects and
the implementation in Python
Regex can in practice be used to search/query for strings or replace/delete (sub-)strings

Institut für Digital Humanities 2024-04-25 3

Special Symbols in Python’s RegEx I

Most symbols just match a symbol in a string
the regex a matches a single character “a”
the regex hello matches the string “hello”

The plus sign + modifies the previous symbol in a regex and means matched at least once and repeated as
often as wanted

the regex a+ matches the strings “a”, “aa”, “aaa”, “aaaa”, …
the regex ba+ matches the strings “ba”, “baa”, “baaa”, “baaaa”, …
the regex a+b+ matches the strings “ab”, “aab”, “aaab”, “aaaab”, “abb”, “abbb”, “abbbb”, “aabb”, …

The asterisk * modifies the previous symbol in a regex and means repeated as often as wanted or empty
string

the regex a* matches the strings “”, “a”, “aa”, “aaa”, …
the regex aa* matches the strings “a”, “aa”, “aaa”, “aaaa”, …
the regex a*b* matches the strings “”, “a”, “b”, “ab”, …

The question mark ? makes the previous symbol optional
the regex a? matches “” or “a”
the regex ba? matches “b” or “ba”

If you want to use a literal question mark, asterisk, plus sign, etc. you have to escape it with a backslash \
the regex a?b\? matches “b?” and “ab?”

Institut für Digital Humanities 2024-04-25 4

Special Symbols in Python’s RegEx II

Curley brackets {} can be used to indicate the number of times the previous symbol should be repeated
the regex a{2} matches “aa”
the regex a{2,4} matches “aa”, “aaa” and “aaaa”
the regex a{3,} matches at least three, “aaa”, “aaaa”, “aaaaa”, …
the regex a{,3} matches at most three, “a”, “aa” and “aaa”

Square brackets [] are used to indicate choices and specially defined ranges
the regex a[bc]d matches “abd” and “acd”
the regex [0-9] matches “0”, “1”, …, “8”, “9”
the regex [a-d] matches “a”, “b”, “c” and “d”

The dot . matches any symbol (except newline)
the regex a.c matches the strings “abc”, “azc”, “a$c”, “aéc”, “aॐc”, …

\w matches any alphanumerical character plus underscore
\W matches any non-alphanumerical character
\d matches any digit (mostly [0-9])
\D matches any non-digit
\s matches any whitespace (mainly space, newline and tab)
\S matches any non-whitespace

Institut für Digital Humanities 2024-04-25 5

Special Symbols in Python’s RegEx III

The caret ^ matches the beginning of a string and the dollar sign $ matches the end of a string
the regex ^house$ matches “house”, but not “brickhouse” or “house warming”, etc.

Round brackets with ?: after the opening bracket (?:) can be used to group symbols together and apply
operators on the whole group

the regex fast(?:er)? matches “fast” and “faster”
the regex (?:abba)+ matches “abba”, “abbaabba”, “abbaabbaabba”, …

The pipe symbol | indicates an alternative (or)
the regex (?:(?:laugh|look|shout)ed)|went finds “laughed”, “looked”, “shouted” and “went”

The caret inside squared brackets means negation
the regex hell[^o] matches “hella”, “hellb”, “hellc”, …, but not “hello”

There are many more options, check out https://docs.python.org/3/library/re.html

Institut für Digital Humanities 2024-04-25 6

https://docs.python.org/3/library/re.html

Regex Functions in Python

import re
string = "something something that I want to match"
if re.search("that", string): # re.search returns true if the regex matches the (sub)string at least once

print(True)
if re.match("something", string): # re.match returns true if the regex matches the beginning of the string

print(True)
if not re.match("that", string):

print(True)

print(re.findall("something", string)) # re.findall returns a list with all matches
print(re.findall("\w+", string))
print(re.findall("\s", string))

print(re.findall(" \w+ ", string)) # Matches are not overlapping

print(re.findall("<.+>", "<tag1> -- <tag2>")) # the * and + operators are "greedy" by default
print(re.findall("<.+?>", "<tag1> -- <tag2>")) # a question mark behind * and + makes them non-greedy

> True
> True
> True

> ['something', 'something']
> ['something', 'something', 'that', 'I', 'want', 'to', 'match']
> [' ', ' ', ' ', ' ', ' ', ' ']

> [' something ', ' I ', ' to ']

> ['<tag1> -- <tag2>']
> ['<tag1>', '<tag2>']

Institut für Digital Humanities 2024-04-25 7

02

EXERCISE 04

F
o
to

:
G

re
g

o
r

H
ü
b

l

Janis Pagel
Institut für Digital Humanities

eMail janis.pagel@uni-koeln.de
Website https://janispagel.de

mailto:janis.pagel@uni-koeln.de
https://janispagel.de

	Regular Expressions (RegEx)
	Exercise 04

