UNIVERSITAT
ZU KOLN

SPRACHVERARBEITUNG: UBUNG

SoSe 2024

Janis Pagel

Institut fiir Digital Humanities 2024-04-25

01

REGULAR EXPRESSIONS (REGEX)

Introduction

® Formal expressions to describe a (finite or infinite) set of strings

® Implemented in many (if not all) programming languages
e Careful: Syntax of regex is often different between different programming languages

® There are many things to say about regex from a theoretcial point of view (formal languages, finite state
automata, Chomsky hierarchy, computability, etc.), but this exercise will focus on the practical aspects and
the implementation in Python

® Regex can in practice be used to search/query for strings or replace/delete (sub-)strings

KON
Institut fir Digital Humanities 2024-04-25

Special Symbols in Python’s RegEx |

® Most symbols just match a symbol in a string

® the regex a matches a single character “a”
® the regex hello matches the string “hello”

® The plus sign + modifies the previous symbol in a regex and means matched at least once and repeated as
often as wanted

® the regex a+ matches the strings “a"”, “aa”, “aaa”, “aaaa”, ..
® the regex ba+ matches the strings “ba”, “baa”, “baaa”, “baaaa”, ..
® the regex a+b+ matches the strings “ab”, “aab"”, “aaab”, “aaaab”, “abb"”, “abbb"”, “abbbb”, “aabb”, ..

® The asterisk * modifies the previous symbol in a regex and means repeated as often as wanted or empty

string
® the regex a* matches the strings “”, “a”, “aa”, “aaa”, ..
® the regex aa* matches the strings “a”, "aa”, “aaa”, “aaaa", ..
® the regex a*xb* matches the strings “”, “a”, “b", “ab", ..

® The question mark ? makes the previous symbol optional

® the regex a? matches “" or “a
® the regex ba? matches “b" or “ba”

® |f you want to use a literal question mark, asterisk, plus sign, etc. you have to escape it with a backslash \
® the regex a?b\? matches “b?" and “ab?”

UNIVERSITAT
KON

Institut fir Digital Humanities 2024-04-25

Special Symbols in Python’s RegEx Il

® Curley brackets {} can be used to indicate the number of times the previous symbol should be repeated

® the regex a{2} matches “aa”

® the regex a{2,4} matches “aa”, “aaa"” and “aaaa”

® the regex a{3,} matches at least three, “aaa”, “aaaa”, “aaaaa”, ..
L]

the regex a{,3} matches at most three, “a”, “aa” and “aaa”
e Square brackets [] are used to indicate choices and specially defined ranges

® the regex a[bc]ld matches “abd” and “acd”
® the regex [0-9] matches “0", “1", .., “8", “9"

® the regex [a-d] matches “a", “b", “c” and “d"
® The dot . matches any symbol (except newline)

e the regex a.c matches the strings “abc”, “azc”, “a$c”, “aéc”, “adec”, ..
® \w matches any alphanumerical character plus underscore

® \W matches any non-alphanumerical character

® \d matches any digit (mostly [0-9])

® \D matches any non-digit

® \s matches any whitespace (mainly space, newline and tab)

® \S matches any non-whitespace

UNIVERSITAT
KON

Institut fir Digital Humanities 2024-04-25

Special Symbols in Python’s RegEx IlI

® The caret = matches the beginning of a string and the dollar sign $ matches the end of a string
® the regex “house$ matches “house”, but not "“brickhouse” or “house warming”, etc.

® Round brackets with ?: after the opening bracket (7:) can be used to group symbols together and apply
operators on the whole group

® the regex fast(7:er)? matches “fast” and “faster”
® the regex (?7:abba)+ matches “abba”, “abbaabba”, “abbaabbaabba”, ..

® The pipe symbol | indicates an alternative (or)

® the regex (7:(7:laughl|look|shout)ed) |went finds “laughed”, “looked”, “shouted” and “went”
® The caret inside squared brackets means negation

® the regex hell[~o] matches “hella”, “hellb”, “hellc”, .., but not “hello”
® There are many more options, check out https://docs.python.org/3/library/re.html

UNIVERSITAT
KON

Institut fir Digital Humanities 2024-04-25

https://docs.python.org/3/library/re.html

Regex Functions in Python

import re

string = "something something that I want to match"

if re.search("that", string): # re.search returns true if the regex matches the (sub)string at least once
print (True)

if re.match("something", string):
print (True)

if not re.match("that",
print (True)

re.match returns true if the regex matches the beginning of the string

string):

print(re.findall("something", string)) # re.findall returns a list with all matches
print(re.findall("\w+", string))

print(re.findall("\s", string))

print(re.findall(" \w+ ", string)) # Matches are not overlapping

print(re.findall("<.+>", "<tagl> -- <tag2>")) # the * and + operators are "greedy" by default
print(re.findall("<.+?>", "<tagl> -- <tag2>")) # a question mark behind * and + makes them non-greedy
> True

> True

> True

> ['something', 'something']

> ['something', 'something', 'that', 'I', 'want', 'to', 'match']

S, [I O S

> [' something ', ' I ', ' to ']

> ['<tagl> -- <tag2>']

SRS ['<tagl>', '<tag2>'] »
1 Institut fiir Digital Humanities

2024-04-25

02

EXERCISE 04

s
E
z
s
s
L
[c]
8
3
2

mailto:janis.pagel@uni-koeln.de
https://janispagel.de

	Regular Expressions (RegEx)
	Exercise 04

