
Sprachverarbeitung: Übung
SoSe 24

Janis Pagel
Department for Digital Humanities, University of Cologne

2024-07-02

For this exercise, you need to both submit manual calculations as well as Python
code. Please submit two files in Ilias, one a PDF with your calculations and one a file
containing your Python code (either Jupyter Notebook or Python script). You can also
combine both files into a zip-archive and submit only the archive. You can either solve
the calculations by hand on a sheet of paper, scan it and submit as a PDF file or use
the capabilities to write mathematical equations of tools like MS Word / LibreOffice /
LaTeX, etc. to write down your calculations digitally.

Exercise 1.
Given is a Neural Network with one hidden layer and the following weights (see also
Figure 1):

W1 =

 0.8 −0.7 0.4 −0.3
0.3 0.1 −0.3 0.1
−0.2 −0.3 0.5 0.9

W2 =
[
0.3 0.6 0.2

]
(1)

Given are two input vectors x1 and x2:

x1 =
[
−0.5 0.8 1 0.2

]
x2 =

[
0.5 0 1 −1

]
(2)

Calculate the output of the neural network y for both input vectors by calculating the
dot product of each input vector with the weights of each neuron of the hidden layer
(W1) and afterwards the dot product of the hidden layer values with the weights of W2.
Use the sigmoid function for both the activation function of the hidden layer and the
function of the output layer.

1



Figure 1: Neural Network

2



Solution 1.

x1 ·W 1
1 = [−0.5, 0.8, 1, 0.2] · [0.8,−0.7, 0.4,−0.3] =

(−0.5× 0.8) + (0.8×−0.7) + (1× 0.4) + (0.2×−0.3) ≈ −0.62

h11 =
1

1 + e0.62
≈ 0.35

x1 ·W 2
1 = [−0.5, 0.8, 1, 0.2] · [0.3, 0.1,−0.3, 0.1] = −0.35

h21 =
1

1 + e0.35
≈ 0.41

x1 ·W 3
1 = [−0.5, 0.8, 1, 0.2] · [−0.2,−0.3, 0.5, 0.9] = 0.54

h31 =
1

1 + e−0.54
≈ 0.63

h1 ·W2 = [0.35, 0.41, 0.63] · [0.3, 0.6, 0.2] = 0.477

y =
1

1 + e−0.477
≈ 0.62

x2 ·W 1
1 = [0.5, 0, 1,−1] · [0.8,−0.7, 0.4,−0.3] =

(0.5× 0.8) + (0×−0.7) + (1× 0.4) + (−1×−0.3) ≈ 1.1

h11 =
1

1 + e−1.1
≈ 0.75

x1 ·W 2
1 = [0.5, 0, 1,−1] · [0.3, 0.1,−0.3, 0.1] = −0.25

h21 =
1

1 + e0.25
≈ 0.44

x1 ·W 3
1 = [0.5, 0, 1,−1] · [−0.2,−0.3, 0.5, 0.9] = −0.5

h31 =
1

1 + e0.5
≈ 0.38

h1 ·W2 = [0.75, 0.44, 0.38] · [0.3, 0.6, 0.2] = 0.565

y =
1

1 + e−0.565
≈ 0.64

The probability the network outputs for x2 (0.64) is slightly than for x1 (0.62), hence
the network predicts x2 to be more close to the target class.

Exercise 2.
Implement a neural network with Keras and Tensorflow in Python using the Sequential
() object. You can decide on the number of hidden layers, the number of neurons in
each layer, the activation functions and the number of epochs yourself. Use the data
of apartment sales given on https://lehre.idh.uni-koeln.de/site/assets/files/
5151/apartments_sales.csv and split it into 75% training and 25% test sets. Use the
features “distance_to_city_center”, “rooms” and “size” to predict if the apartment has
already been sold or not (column “sold”) Train your neural network on the train set and
print the accuracy score for the test set.

3

https://lehre.idh.uni-koeln.de/site/assets/files/5151/apartments_sales.csv
https://lehre.idh.uni-koeln.de/site/assets/files/5151/apartments_sales.csv


Solution 2.
import tensorflow as tf
import pandas as pd
from sklearn.model_selection import train_test_split
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

df = pd.read_csv("apartments_sales.csv")

X_train,X_test,y_train,y_test=train_test_split(df[["distance_to_city_center",
"rooms", "size"]], df[["sold"]],

random_state=42, test_size=0.25)

nn = Sequential()
nn.add(Dense(100, activation='sigmoid'))
nn.add(Dense(1, activation='sigmoid'))
nn.compile(loss='binary_crossentropy', optimizer='sgd', metrics=['accuracy'])
nn.fit(X_train, y_train, epochs=200, initial_epoch=0, verbose=0)
loss, accuracy = nn.evaluate(X_test, y_test, verbose=1)

print(f'Test Accuracy {round(accuracy*100,2)}')

4


