
Counting Words, Corpus Statistics, Encoding
Sprachverarbeitung (VL + Ü)

Nils Reiter

April 18, 2024



Recap

I Computational Linguistics as a discipline between computer science and linguistics
I also known as »natural language processing«, (NLP)

I History of CL
I Word embeddings
I Transformer models
I Chatbots
I CL has exploded in the last 10 years

I Experiments are used to make progress in CL

Session 2 2 / 34



Section 1

Corpora



Corpora

Corpora

I (Large) collections of linguistic expressions
I Speech corpora: Spoken language

I File formats: wav, mp3, …
I Text corpora: Written language

I File formats: txt, xml, json, …

I Why do we look at corpora?
I Making statements about language needs to take into account many language expressions
I We under-estimate creativity, flexibility and productivity of language use
→ Empiricism

Session 2 4 / 34



Corpora

Corpora

I (Large) collections of linguistic expressions
I Speech corpora: Spoken language

I File formats: wav, mp3, …
I Text corpora: Written language

I File formats: txt, xml, json, …
I Why do we look at corpora?

I Making statements about language needs to take into account many language expressions
I We under-estimate creativity, flexibility and productivity of language use
→ Empiricism

Session 2 4 / 34



Corpora

Corpora

I (Large) collections of linguistic expressions
I Speech corpora: Spoken language

I File formats: wav, mp3, …
I Text corpora: Written language

I File formats: txt, xml, json, …
I Why do we look at corpora?

I Making statements about language needs to take into account many language expressions
I We under-estimate creativity, flexibility and productivity of language use
→ Empiricism

Session 2 4 / 34



Corpora

Meta data and annotations

Meta data: Data about the data
I Information about the corpus
I Language, date of creation, author(s), publication source, …
I Machine-readable: XML, JSON, CSV, …

Annotations: Data about parts of the corpus
I Examples

I Linguistic annotation: Parts of speech, named entities, syntactic relations, …
I Non-linguistic annotation: Sentiment expressions, rhetoric devices, arguments, …

I Explicit location in the corpus: Document/word/character numbers in text, milliseconds
in speech

Session 2 5 / 34



Corpora

Meta data and annotations

Meta data: Data about the data
I Information about the corpus
I Language, date of creation, author(s), publication source, …
I Machine-readable: XML, JSON, CSV, …

Annotations: Data about parts of the corpus
I Examples

I Linguistic annotation: Parts of speech, named entities, syntactic relations, …
I Non-linguistic annotation: Sentiment expressions, rhetoric devices, arguments, …

I Explicit location in the corpus: Document/word/character numbers in text, milliseconds
in speech

Session 2 5 / 34



Corpora

Meta data and annotations

Meta data: Data about the data
I Information about the corpus
I Language, date of creation, author(s), publication source, …
I Machine-readable: XML, JSON, CSV, …

Annotations: Data about parts of the corpus
I Examples

I Linguistic annotation: Parts of speech, named entities, syntactic relations, …
I Non-linguistic annotation: Sentiment expressions, rhetoric devices, arguments, …

I Explicit location in the corpus: Document/word/character numbers in text, milliseconds
in speech

Session 2 5 / 34



Corpora

Preparations (for text corpora)

I OCR: Optical Character Recognition (Manning/Schütze, 1999, 123)
I Convert images (e.g., from a scan) into text
I Huge improvements in last five years

I Encoding: How to specify characters in a computer
I Simple: ASCII (7 bit per character, 27 = 128 different characters)
I Outdated: Latin-1 / ISO-8859 (8 bit, ⇒ 256 diff. characters)
I Modern: Unicode (e.g., UTF-8)

I 1B/char to 4B/char
I 1 112 064 characters can be represented

Session 2 6 / 34



Corpora

Preparations (for text corpora)

I OCR: Optical Character Recognition (Manning/Schütze, 1999, 123)
I Convert images (e.g., from a scan) into text
I Huge improvements in last five years

I Encoding: How to specify characters in a computer
I Simple: ASCII (7 bit per character, 27 = 128 different characters)
I Outdated: Latin-1 / ISO-8859 (8 bit, ⇒ 256 diff. characters)
I Modern: Unicode (e.g., UTF-8)

I 1B/char to 4B/char
I 1 112 064 characters can be represented

Session 2 6 / 34



Corpora

Tools and Techniques

I Plain text editors
I We often want to inspect the corpus as it is on disk (i.e., without an editor interfering too

much)
I Mac: Textmate/emacs/vi; Windows: Notepad++/emacs/vi

I Regular expressions
I The most important tool for corpus analysis

I Cleanup (e.g., after scraping a corpus from the web)
I Analysis (e.g., to find all variants of a word or deal with slang)

I Usable in all∗ programming languages and find tools
I Command line

I Large corpora often cannot be displayed with GUI tools
I Command line tools faster and more memory efficient

Session 2 7 / 34



Corpora

Tools and Techniques

I Plain text editors
I We often want to inspect the corpus as it is on disk (i.e., without an editor interfering too

much)
I Mac: Textmate/emacs/vi; Windows: Notepad++/emacs/vi

I Regular expressions
I The most important tool for corpus analysis

I Cleanup (e.g., after scraping a corpus from the web)
I Analysis (e.g., to find all variants of a word or deal with slang)

I Usable in all∗ programming languages and find tools

I Command line
I Large corpora often cannot be displayed with GUI tools
I Command line tools faster and more memory efficient

Session 2 7 / 34



Corpora

Tools and Techniques

I Plain text editors
I We often want to inspect the corpus as it is on disk (i.e., without an editor interfering too

much)
I Mac: Textmate/emacs/vi; Windows: Notepad++/emacs/vi

I Regular expressions
I The most important tool for corpus analysis

I Cleanup (e.g., after scraping a corpus from the web)
I Analysis (e.g., to find all variants of a word or deal with slang)

I Usable in all∗ programming languages and find tools
I Command line

I Large corpora often cannot be displayed with GUI tools
I Command line tools faster and more memory efficient

Session 2 7 / 34



Corpora

Tokenization

I Segmenting a corpus into individual units
I Tokens: Words, punctuation, numbers, symbols, …

I Naive: Splitting at white space (space, newline, …)
I Why naive?

I Solved, but complex
I E.g., syntactic points vs. morphological points

I Sometimes, shortcuts are ok – depends on the use case

Session 2 8 / 34



Corpora

Tokenization

I Segmenting a corpus into individual units
I Tokens: Words, punctuation, numbers, symbols, …
I Naive: Splitting at white space (space, newline, …)

I Why naive?

I Solved, but complex
I E.g., syntactic points vs. morphological points

I Sometimes, shortcuts are ok – depends on the use case

Session 2 8 / 34



Corpora

Tokenization

I Segmenting a corpus into individual units
I Tokens: Words, punctuation, numbers, symbols, …
I Naive: Splitting at white space (space, newline, …)

I Why naive?
I Solved, but complex

I E.g., syntactic points vs. morphological points
I Sometimes, shortcuts are ok – depends on the use case

Session 2 8 / 34



Corpora

Word Counts

Count Word

585 die
584 und
407 er
404 der
348 zu
311 sich
259 nicht
250 sie
243 in
243 den
233 war
218 Gregor
189 mit
178 das
176 auf
171 es
162 dem
155 hatte
137 ein
136 aber
133 daß
123 als
110 auch
107 Schwester

…

I Number of words in a text
I Most frequent words (MFW) are function words
I ›Content words‹ that appear often indicate text

content

Stop Word Removal

I Common practice: Remove »stop words«
I But there are choices:

I Should stop words be removed at all?
I Which words do we consider stop words?

� Removing words is not content-preserving

Session 2 9 / 34



Corpora

Word Counts

Count Word

585 die
584 und
407 er
404 der
348 zu
311 sich
259 nicht
250 sie
243 in
243 den
233 war
218 Gregor
189 mit
178 das
176 auf
171 es
162 dem
155 hatte
137 ein
136 aber
133 daß
123 als
110 auch
107 Schwester

…

Als Gregor Samsa eines Morgens aus unruhigen
Träumen erwachte, fand er sich in seinem Bett zu
einem ungeheueren Ungeziefer verwandelt. …

I Number of words in a text
I Most frequent words (MFW) are function words
I ›Content words‹ that appear often indicate text

content

Stop Word Removal

I Common practice: Remove »stop words«
I But there are choices:

I Should stop words be removed at all?
I Which words do we consider stop words?

� Removing words is not content-preserving

Session 2 9 / 34



Corpora

Word Counts

Count Word

585 die
584 und
407 er
404 der
348 zu
311 sich
259 nicht
250 sie
243 in
243 den
233 war
218 Gregor
189 mit
178 das
176 auf
171 es
162 dem
155 hatte
137 ein
136 aber
133 daß
123 als
110 auch
107 Schwester

…

I Number of words in a text
I Most frequent words (MFW) are function words
I ›Content words‹ that appear often indicate text

content

Stop Word Removal

I Common practice: Remove »stop words«
I But there are choices:

I Should stop words be removed at all?
I Which words do we consider stop words?

� Removing words is not content-preserving

Session 2 9 / 34



Corpora

Word Counts

Count Word

585 die
584 und
407 er
404 der
348 zu
311 sich
259 nicht
250 sie
243 in
243 den
233 war
218 Gregor
189 mit
178 das
176 auf
171 es
162 dem
155 hatte
137 ein
136 aber
133 daß
123 als
110 auch
107 Schwester

…

I Number of words in a text
I Most frequent words (MFW) are function words
I ›Content words‹ that appear often indicate text

content

Stop Word Removal

I Common practice: Remove »stop words«
I But there are choices:

I Should stop words be removed at all?
I Which words do we consider stop words?

� Removing words is not content-preserving

Session 2 9 / 34



Corpora

Zipf’s Law
Manning/Schütze, 1999, 23 ff.

I George Kingsley Zipf (1902-1950): American Linguist
I Basic property of human language

I Frequency distribution of words (in a corpus) is stable
I Word frequency is inversely proportional to its position in the ranking

f ∝ 1

r
(there is a constant k, such that f × r = k)

Session 2 10 / 34



Corpora

Zipf’s Law
Manning/Schütze, 1999, 23 ff.

Figure: Words sorted after their
frequency (red). Text: Kafka’s »Die
Verwandlung«.

Consequences

I Very few words appear with very high
frequency

I The vast majority of words appear only
once
I It’s difficult to learn something about

these words!

Session 2 11 / 34



Corpora

Zipf’s Law
Manning/Schütze, 1999, 23 ff.

Figure: Words sorted after their
frequency (red). Zipf distribution:
y = 600 1

x (green). Text: Kafka’s »Die
Verwandlung«.

Consequences

I Very few words appear with very high
frequency

I The vast majority of words appear only
once
I It’s difficult to learn something about

these words!

Session 2 11 / 34



Corpora

Zipf’s Law
Manning/Schütze, 1999, 23 ff.

Figure: Words sorted after their
frequency (red). Zipf distribution:
y = 600 1

x (green). Text: Kafka’s »Die
Verwandlung«.

Consequences

I Very few words appear with very high
frequency

I The vast majority of words appear only
once
I It’s difficult to learn something about

these words!

Session 2 11 / 34



Corpora

Counting Words
I Absolute numbers are not that interesting
I Insights are only generated through comparison

Abs. number Word form

20 women
67 woman
31 men
79 family
82 sister
83 friend
99 bath

117 father
133 man
144 sir

Table: Jane Austens’s Persuasion (nouns)

Abs. number Word form

0 friend
2 bath

11 women
23 men
30 father
68 woman
83 family

113 sir
121 man
282 sister

Table: Jane Austens’s Sense and Sensibility
(nouns)Session 2 12 / 34



Corpora

Absolute Numbers

Word Persuasion Sense

woman 67

0.000 79%

68

0.000 55%

women 20

0.000 24%

11
man 133

0.001 58%

121
men 31 23
sister 82 282

…does it make sense to compare absolute numbers? No.

I The texts/corpora do not have the same size
I Scaling using their length: Division by the total number of words

I Visible changes: Proportion of »sister«: 3.4 → 2.4

Session 2 13 / 34



Corpora

Absolute Numbers

Word Persuasion Sense

woman 67

0.000 79%

68

0.000 55%

women 20

0.000 24%

11
man 133

0.001 58%

121
men 31 23
sister 82 282

…does it make sense to compare absolute numbers? No.
I The texts/corpora do not have the same size
I Scaling using their length: Division by the total number of words

I Visible changes: Proportion of »sister«: 3.4 → 2.4

Session 2 13 / 34



Corpora

Absolute Numbers

Word Persuasion Sense

woman 67 0.000 79% 68 0.000 55%
women 20 0.000 24% 11 0.000 09%
man 133 0.001 58% 121 0.001 00%
men 31 0.000 37% 23 0.000 19%
sister 82 0.000 97% 282 0.002 33%

…does it make sense to compare absolute numbers? No.
I The texts/corpora do not have the same size
I Scaling using their length: Division by the total number of words
I Visible changes: Proportion of »sister«: 3.4 → 2.4

Session 2 13 / 34



Corpora

Scaling

I Number of words: Result of a measurement
I If measuring in different scenarios, it’s important to scale the results

I »In a text that is much shorter, there are much less chances for a certain word to be used.«

Recipe

I Divide the result of the measurement by the theoretical maximum
I How many chances are there for »sister« to be used?

I As many as there are words in the text
I Thus, we divide by the total number of words

I It’s not always obvious how to scaled
I When reading research: Was it scaled, and how?

Session 2 14 / 34



Corpora

Scaling

I Number of words: Result of a measurement
I If measuring in different scenarios, it’s important to scale the results

I »In a text that is much shorter, there are much less chances for a certain word to be used.«

Recipe

I Divide the result of the measurement by the theoretical maximum
I How many chances are there for »sister« to be used?

I As many as there are words in the text
I Thus, we divide by the total number of words

I It’s not always obvious how to scaled
I When reading research: Was it scaled, and how?

Session 2 14 / 34



Corpora

Scaling

I Number of words: Result of a measurement
I If measuring in different scenarios, it’s important to scale the results

I »In a text that is much shorter, there are much less chances for a certain word to be used.«

Recipe

I Divide the result of the measurement by the theoretical maximum
I How many chances are there for »sister« to be used?

I As many as there are words in the text
I Thus, we divide by the total number of words

I It’s not always obvious how to scaled
I When reading research: Was it scaled, and how?

Session 2 14 / 34



Corpora
Counting Words
Types and Tokens
N-Grams

Encoding

Summary



Corpora

Types and Tokens
Manning/Schütze, 1999, 21 f.

I If a text has been tokenized, we can access individual units: Tokens
I Not all tokens are words: Punctuation, detached prefixes, …

I We are often also interested in different tokens: Types

Example
the cat chases the mouse

I Tokens: the, cat, chases, the, mouse
I Types: the, cat, chases, mouse

Session 2 16 / 34



Corpora

Types and Tokens
Manning/Schütze, 1999, 21 f.

I If a text has been tokenized, we can access individual units: Tokens
I Not all tokens are words: Punctuation, detached prefixes, …
I We are often also interested in different tokens: Types

Example
the cat chases the mouse

I Tokens: the, cat, chases, the, mouse
I Types: the, cat, chases, mouse

Session 2 16 / 34



Corpora

Types and Tokens
Manning/Schütze, 1999, 21 f.

I If a text has been tokenized, we can access individual units: Tokens
I Not all tokens are words: Punctuation, detached prefixes, …
I We are often also interested in different tokens: Types

Example
the cat chases the mouse

I Tokens: the, cat, chases, the, mouse
I Types: the, cat, chases, mouse

Session 2 16 / 34



Corpora

Types and Tokens
Manning/Schütze, 1999, 21 f.

I If a text has been tokenized, we can access individual units: Tokens
I Not all tokens are words: Punctuation, detached prefixes, …
I We are often also interested in different tokens: Types

Example
the cat chases the mouse

I Tokens: the, cat, chases, the, mouse
I Types: the, cat, chases, mouse

Session 2 16 / 34



Corpora

Type-Token-Ratio (TTR)

I What is the relation between number of tokens and number of types?

I Construct a sentence with 5 tokens and 5 types!
I »the dog barks loudly .«

I Construct a sentence with 5 tokens and 4 types!
I »the cat loves the mouse«

I Construct a sentence with 5 tokens and 1 type!
I »dog dog dog dog dog« (not really a sentence …)
I It’s not possible to create a ›proper‹ sentence with 1 type

Session 2 17 / 34



Corpora

Type-Token-Ratio (TTR)

I What is the relation between number of tokens and number of types?
I Construct a sentence with 5 tokens and 5 types!

I »the dog barks loudly .«
I Construct a sentence with 5 tokens and 4 types!

I »the cat loves the mouse«
I Construct a sentence with 5 tokens and 1 type!

I »dog dog dog dog dog« (not really a sentence …)
I It’s not possible to create a ›proper‹ sentence with 1 type

Session 2 17 / 34



Corpora

Type-Token-Ratio (TTR)

I What is the relation between number of tokens and number of types?
I Construct a sentence with 5 tokens and 5 types!

I »the dog barks loudly .«

I Construct a sentence with 5 tokens and 4 types!
I »the cat loves the mouse«

I Construct a sentence with 5 tokens and 1 type!
I »dog dog dog dog dog« (not really a sentence …)
I It’s not possible to create a ›proper‹ sentence with 1 type

Session 2 17 / 34



Corpora

Type-Token-Ratio (TTR)

I What is the relation between number of tokens and number of types?
I Construct a sentence with 5 tokens and 5 types!

I »the dog barks loudly .«
I Construct a sentence with 5 tokens and 4 types!

I »the cat loves the mouse«
I Construct a sentence with 5 tokens and 1 type!

I »dog dog dog dog dog« (not really a sentence …)
I It’s not possible to create a ›proper‹ sentence with 1 type

Session 2 17 / 34



Corpora

Type-Token-Ratio (TTR)

I What is the relation between number of tokens and number of types?
I Construct a sentence with 5 tokens and 5 types!

I »the dog barks loudly .«
I Construct a sentence with 5 tokens and 4 types!

I »the cat loves the mouse«

I Construct a sentence with 5 tokens and 1 type!
I »dog dog dog dog dog« (not really a sentence …)
I It’s not possible to create a ›proper‹ sentence with 1 type

Session 2 17 / 34



Corpora

Type-Token-Ratio (TTR)

I What is the relation between number of tokens and number of types?
I Construct a sentence with 5 tokens and 5 types!

I »the dog barks loudly .«
I Construct a sentence with 5 tokens and 4 types!

I »the cat loves the mouse«
I Construct a sentence with 5 tokens and 1 type!

I »dog dog dog dog dog« (not really a sentence …)
I It’s not possible to create a ›proper‹ sentence with 1 type

Session 2 17 / 34



Corpora

Type-Token-Ratio (TTR)

I What is the relation between number of tokens and number of types?
I Construct a sentence with 5 tokens and 5 types!

I »the dog barks loudly .«
I Construct a sentence with 5 tokens and 4 types!

I »the cat loves the mouse«
I Construct a sentence with 5 tokens and 1 type!

I »dog dog dog dog dog« (not really a sentence …)
I It’s not possible to create a ›proper‹ sentence with 1 type

Session 2 17 / 34



Corpora

Type-Token-Ratio (TTR)

I Measure for ›lexical variability‹

TTR =
number of types
number of tokens

I Max value: 1

(there cannot be more types than tokens)
I Min value: ε = 1

very large number
I Real (German) texts

I 10 000words (Wikipedia): 4021
10 000 = 0.4021

Session 2 18 / 34



Corpora

Type-Token-Ratio (TTR)

I Measure for ›lexical variability‹

TTR =
number of types
number of tokens

I Max value: 1 (there cannot be more types than tokens)
I Min value: ε = 1

very large number

I Real (German) texts
I 10 000words (Wikipedia): 4021

10 000 = 0.4021

Session 2 18 / 34



Corpora

Type-Token-Ratio (TTR)

I Measure for ›lexical variability‹

TTR =
number of types
number of tokens

I Max value: 1 (there cannot be more types than tokens)
I Min value: ε = 1

very large number
I Real (German) texts

I 10 000words (Wikipedia): 4021
10 000 = 0.4021

Session 2 18 / 34



Corpora

TTR and Text Length

0 5000 10000 15000 20000 25000 30000

0.35
0.40
0.45
0.50
0.55

Number of words

TT
R

Figure: Type-Token-Ratio for increasing text lengths

I Increasing length → lower TTR!
I Why?– Zipf!

Session 2 19 / 34



Corpora

TTR and Text Length

0 5000 10000 15000 20000 25000 30000

0.35
0.40
0.45
0.50
0.55

Number of words

TT
R

Figure: Type-Token-Ratio for increasing text lengths

I Increasing length → lower TTR!
I Why?

– Zipf!

Session 2 19 / 34



Corpora

TTR and Text Length

0 5000 10000 15000 20000 25000 30000

0.35
0.40
0.45
0.50
0.55

Number of words

TT
R

Figure: Type-Token-Ratio for increasing text lengths

I Increasing length → lower TTR!
I Why?– Zipf!

Session 2 19 / 34



Corpora

Standardized TTR (STTR)

I Calculate TTR over windows of fixed size (e.g., 1000 words)
I Calculate arithmetic mean over TTR values

TTRn =
number of types in nth window
number of tokens in nth window

STTR =
1

w

w∑
i=0

TTRi

Session 2 20 / 34



Corpora

Standardized TTR (STTR)

I Calculate TTR over windows of fixed size (e.g., 1000 words)
I Calculate arithmetic mean over TTR values

TTRn =
number of types in nth window
number of tokens in nth window

STTR =
1

w

w∑
i=0

TTRi

Session 2 20 / 34



Corpora

Standardized TTR (STTR)

I Calculate TTR over windows of fixed size (e.g., 1000 words)
I Calculate arithmetic mean over TTR values

TTRn =
number of types in nth window
number of tokens in nth window

STTR =
1

w

w∑
i=0

TTRi

Session 2 20 / 34



Corpora

n-grams

I So far: Individual tokens
I But: Context is important for linguistic expressions

I n-gram: A list of n directly adjacent tokens
I Popular choices for n: 2 to 4

Example
The dog barks.
I 1-grams: »the«, »dog«, »barks«, ».«
I 2-grams (bigrams): »the dog«, »dog barks«, »barks .«
I 3-grams (trigrams): »the dog barks«, »dog barks .«

Session 2 21 / 34



Corpora

n-grams

I So far: Individual tokens
I But: Context is important for linguistic expressions
I n-gram: A list of n directly adjacent tokens

I Popular choices for n: 2 to 4

Example
The dog barks.
I 1-grams: »the«, »dog«, »barks«, ».«
I 2-grams (bigrams): »the dog«, »dog barks«, »barks .«
I 3-grams (trigrams): »the dog barks«, »dog barks .«

Session 2 21 / 34



Corpora

n-grams

I So far: Individual tokens
I But: Context is important for linguistic expressions
I n-gram: A list of n directly adjacent tokens

I Popular choices for n: 2 to 4

Example
The dog barks.
I 1-grams: »the«, »dog«, »barks«, ».«
I 2-grams (bigrams): »the dog«, »dog barks«, »barks .«
I 3-grams (trigrams): »the dog barks«, »dog barks .«

Session 2 21 / 34



Section 2

Encoding



Encoding

Introduction

I How to represent text data in a computer
I Enumeration: Each character is assigned a number
I American Standard Code for Information Interchange (ASCII) Wikipedia: ASCII

I 128 = 27 characters, including control symbols for telegraphy
I No German Umlauts etc.

I Unicode: A single standard to represent all characters from all languages unicode.org

I 149 186 characters, including CJK ideographs Unicode 15.0 charts

I Complex enumeration scheme

Session 2 23 / 34

https://en.wikipedia.org/wiki/ASCII
https://home.unicode.org
https://www.unicode.org/charts/


Encoding

Introduction

I How to represent text data in a computer
I Enumeration: Each character is assigned a number
I American Standard Code for Information Interchange (ASCII) Wikipedia: ASCII

I 128 = 27 characters, including control symbols for telegraphy
I No German Umlauts etc.

I Unicode: A single standard to represent all characters from all languages unicode.org

I 149 186 characters, including CJK ideographs Unicode 15.0 charts

I Complex enumeration scheme

Session 2 23 / 34

https://en.wikipedia.org/wiki/ASCII
https://home.unicode.org
https://www.unicode.org/charts/


Encoding

Unicode

I Code point: An integer in the Unicode standard
I Written in hexadecimal and prefixed with U+
I E.g.: U+00E4 = »Latin Small Letter a with Diaeresis« = ä

I Mapping methods used to map each code point onto a code unit
I Code unit: A sequence of bytes that represent some character

I Unicode transformation format (UTF): Most common mapping
I UTF-8: uses one to four bytes for each code point, maximizes compatibility with ASCII
I UTF-16, uses one or two 16-bit code units per code point

I Strings in Java!
I UTF-32, uses one 32-bit code unit per code point

Session 2 24 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=00E4


Encoding

Unicode

I Code point: An integer in the Unicode standard
I Written in hexadecimal and prefixed with U+
I E.g.: U+00E4 = »Latin Small Letter a with Diaeresis« = ä

I Mapping methods used to map each code point onto a code unit
I Code unit: A sequence of bytes that represent some character

I Unicode transformation format (UTF): Most common mapping
I UTF-8: uses one to four bytes for each code point, maximizes compatibility with ASCII
I UTF-16, uses one or two 16-bit code units per code point

I Strings in Java!
I UTF-32, uses one 32-bit code unit per code point

Session 2 24 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=00E4


Encoding

UTF-8

I Code points U+0000 to U+007F (128) represented in ASCII way, with a leading zero
I E.g.: AASCII =U+0041 = 6510 = 4116 = 10000012 = 0 1 0 0 0 0 0 1

I Code points U+0080 to U+07FF (1920) are represented in two bytes
I First byte starts with 110, second with 10
I E.g.: ä = U+00E4 = 22810 = 111001002 = 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0

I U+0800 to U+FFFF: 1 1 1 0 1 0 1 0 (three bytes)
I U+10000 to U+10FFFF: 4 Bytes, first one starting with 11110, others with 10

Session 2 25 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=0000
https://util.unicode.org/UnicodeJsps/character.jsp?a=007F
https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
https://util.unicode.org/UnicodeJsps/character.jsp?a=0080
https://util.unicode.org/UnicodeJsps/character.jsp?a=07FF
https://util.unicode.org/UnicodeJsps/character.jsp?a=00E4
https://util.unicode.org/UnicodeJsps/character.jsp?a=0800
https://util.unicode.org/UnicodeJsps/character.jsp?a=FFFF
https://util.unicode.org/UnicodeJsps/character.jsp?a=10000
https://util.unicode.org/UnicodeJsps/character.jsp?a=10FFFF


Encoding

UTF-8

I Code points U+0000 to U+007F (128) represented in ASCII way, with a leading zero
I E.g.: AASCII =U+0041 = 6510 = 4116 = 10000012 = 0 1 0 0 0 0 0 1

I Code points U+0080 to U+07FF (1920) are represented in two bytes
I First byte starts with 110, second with 10
I E.g.: ä = U+00E4 = 22810 = 111001002 = 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0

I U+0800 to U+FFFF: 1 1 1 0 1 0 1 0 (three bytes)
I U+10000 to U+10FFFF: 4 Bytes, first one starting with 11110, others with 10

Session 2 25 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=0000
https://util.unicode.org/UnicodeJsps/character.jsp?a=007F
https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
https://util.unicode.org/UnicodeJsps/character.jsp?a=0080
https://util.unicode.org/UnicodeJsps/character.jsp?a=07FF
https://util.unicode.org/UnicodeJsps/character.jsp?a=00E4
https://util.unicode.org/UnicodeJsps/character.jsp?a=0800
https://util.unicode.org/UnicodeJsps/character.jsp?a=FFFF
https://util.unicode.org/UnicodeJsps/character.jsp?a=10000
https://util.unicode.org/UnicodeJsps/character.jsp?a=10FFFF


Encoding

UTF-8

I Code points U+0000 to U+007F (128) represented in ASCII way, with a leading zero
I E.g.: AASCII =U+0041 = 6510 = 4116 = 10000012 = 0 1 0 0 0 0 0 1

I Code points U+0080 to U+07FF (1920) are represented in two bytes
I First byte starts with 110, second with 10
I E.g.: ä = U+00E4 = 22810 = 111001002 = 1 1 0 0 0 0 1 1 1 0 1 0 0 1 0 0

I U+0800 to U+FFFF: 1 1 1 0 1 0 1 0 (three bytes)
I U+10000 to U+10FFFF: 4 Bytes, first one starting with 11110, others with 10

Session 2 25 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=0000
https://util.unicode.org/UnicodeJsps/character.jsp?a=007F
https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
https://util.unicode.org/UnicodeJsps/character.jsp?a=0080
https://util.unicode.org/UnicodeJsps/character.jsp?a=07FF
https://util.unicode.org/UnicodeJsps/character.jsp?a=00E4
https://util.unicode.org/UnicodeJsps/character.jsp?a=0800
https://util.unicode.org/UnicodeJsps/character.jsp?a=FFFF
https://util.unicode.org/UnicodeJsps/character.jsp?a=10000
https://util.unicode.org/UnicodeJsps/character.jsp?a=10FFFF


Encoding

Parsing UTF-8

I If a byte starts with a 0: The character is one byte long
I If a byte starts with a 1:

I The number of 1s before the first 0 determine how many bytes belong to this character
I Check that they start with 10
I Take them together as a single character

I Everything else is an undefined byte sequence
I Maybe it’s a different encoding?

Determining Encoding

I It is difficult to (automatically) determine the encoding of a text
I »11000011 10100100« is »ä« in UTF-8, but »Ã¤« in ISO Latin 1 – how to know what’s

correct?

Session 2 26 / 34



Encoding

Parsing UTF-8

I If a byte starts with a 0: The character is one byte long
I If a byte starts with a 1:

I The number of 1s before the first 0 determine how many bytes belong to this character
I Check that they start with 10
I Take them together as a single character

I Everything else is an undefined byte sequence
I Maybe it’s a different encoding?

Determining Encoding

I It is difficult to (automatically) determine the encoding of a text
I »11000011 10100100« is »ä« in UTF-8, but »Ã¤« in ISO Latin 1 – how to know what’s

correct?

Session 2 26 / 34



Encoding

Parsing UTF-8

I If a byte starts with a 0: The character is one byte long
I If a byte starts with a 1:

I The number of 1s before the first 0 determine how many bytes belong to this character
I Check that they start with 10
I Take them together as a single character

I Everything else is an undefined byte sequence
I Maybe it’s a different encoding?

Determining Encoding

I It is difficult to (automatically) determine the encoding of a text
I »11000011 10100100« is »ä« in UTF-8, but »Ã¤« in ISO Latin 1 – how to know what’s

correct?

Session 2 26 / 34



Encoding

Combined Characters
I For flexibility, there is a mechanism for combining characters
I U+0300 to U+036F defines combining diacritical marks
I To be combined with the preceding character
I U+0041 U+0308 represent »Ä« in decomposed form

I U+00C4 also represents »Ä« (in precomposed form)

Normalization
I Normalization Form D (NFD):

I »Canonical Decomposition«
I All combined characters are represented in their decomposed form

I Normalization Form C (NFC):
I »Canonical Decomposition, followed by Canonical Composition«

Session 2 27 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=0300
https://util.unicode.org/UnicodeJsps/character.jsp?a=036F
https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
https://util.unicode.org/UnicodeJsps/character.jsp?a=0308
https://util.unicode.org/UnicodeJsps/character.jsp?a=00C4


Encoding

Combined Characters
I For flexibility, there is a mechanism for combining characters
I U+0300 to U+036F defines combining diacritical marks
I To be combined with the preceding character
I U+0041 U+0308 represent »Ä« in decomposed form
I U+00C4 also represents »Ä« (in precomposed form)

Normalization
I Normalization Form D (NFD):

I »Canonical Decomposition«
I All combined characters are represented in their decomposed form

I Normalization Form C (NFC):
I »Canonical Decomposition, followed by Canonical Composition«

Session 2 27 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=0300
https://util.unicode.org/UnicodeJsps/character.jsp?a=036F
https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
https://util.unicode.org/UnicodeJsps/character.jsp?a=0308
https://util.unicode.org/UnicodeJsps/character.jsp?a=00C4


Encoding

Combined Characters
I For flexibility, there is a mechanism for combining characters
I U+0300 to U+036F defines combining diacritical marks
I To be combined with the preceding character
I U+0041 U+0308 represent »Ä« in decomposed form
I U+00C4 also represents »Ä« (in precomposed form)

Normalization
I Normalization Form D (NFD):

I »Canonical Decomposition«
I All combined characters are represented in their decomposed form

I Normalization Form C (NFC):
I »Canonical Decomposition, followed by Canonical Composition«

Session 2 27 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=0300
https://util.unicode.org/UnicodeJsps/character.jsp?a=036F
https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
https://util.unicode.org/UnicodeJsps/character.jsp?a=0308
https://util.unicode.org/UnicodeJsps/character.jsp?a=00C4


Encoding

Combined Characters

Figure: Having fun with Unicode Source

Session 2 28 / 34

https://social.cologne/@nilsreiter/112003734298295524


Encoding

More (Interesting) Oddities

I Ω
I Represented as U+2126 and U+03A9

I U+03A9: The Greek letter
I U+2126: The physical unit for electrical resistance

I »a« also represented twice
I U+0061: Latin small letter a
I U+0430: Cyrillic small letter a
� This is/was also a security risk, because https://mybank.com and https://mybаnk.com

look similar

Session 2 29 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=2126
https://util.unicode.org/UnicodeJsps/character.jsp?a=03A9
https://util.unicode.org/UnicodeJsps/character.jsp?a=03A9
https://util.unicode.org/UnicodeJsps/character.jsp?a=2126
https://util.unicode.org/UnicodeJsps/character.jsp?a=0061
https://util.unicode.org/UnicodeJsps/character.jsp?a=0430
https://mybank.com
https://mybаnk.com


Encoding

More (Interesting) Oddities

I Ω
I Represented as U+2126 and U+03A9
I U+03A9: The Greek letter
I U+2126: The physical unit for electrical resistance

I »a« also represented twice
I U+0061: Latin small letter a
I U+0430: Cyrillic small letter a
� This is/was also a security risk, because https://mybank.com and https://mybаnk.com

look similar

Session 2 29 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=2126
https://util.unicode.org/UnicodeJsps/character.jsp?a=03A9
https://util.unicode.org/UnicodeJsps/character.jsp?a=03A9
https://util.unicode.org/UnicodeJsps/character.jsp?a=2126
https://util.unicode.org/UnicodeJsps/character.jsp?a=0061
https://util.unicode.org/UnicodeJsps/character.jsp?a=0430
https://mybank.com
https://mybаnk.com


Encoding

More (Interesting) Oddities

I Ω
I Represented as U+2126 and U+03A9
I U+03A9: The Greek letter
I U+2126: The physical unit for electrical resistance

I »a« also represented twice
I U+0061: Latin small letter a
I U+0430: Cyrillic small letter a
� This is/was also a security risk, because https://mybank.com and https://mybаnk.com

look similar

Session 2 29 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=2126
https://util.unicode.org/UnicodeJsps/character.jsp?a=03A9
https://util.unicode.org/UnicodeJsps/character.jsp?a=03A9
https://util.unicode.org/UnicodeJsps/character.jsp?a=2126
https://util.unicode.org/UnicodeJsps/character.jsp?a=0061
https://util.unicode.org/UnicodeJsps/character.jsp?a=0430
https://mybank.com
https://mybаnk.com


Encoding

More (Interesting) Oddities: Emojis

I Country Flags
I Emoji support came 2010, including country flags
I No individual code point for each flag
I Instead: Regional indicator symbols that represent ISO 3166-1 codes for countries
I Implementations should render U+1F1E9 U+1F1EA as 🇩🇪

I If that’s not possible, use Roman letters (U+1F1E9 U+1F1EA = DE)

I Emoji skin color variation: Similar to character combination
I U+1F44C U+1F3FB = 👌🏻 U+1F44C U+1F3FF = 👌🏿

Session 2 30 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=1F1E9
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F1EA
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F1E9
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F1EA
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F44C
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F3FB
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F44C
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F3FF


Encoding

More (Interesting) Oddities: Emojis

I Country Flags
I Emoji support came 2010, including country flags
I No individual code point for each flag
I Instead: Regional indicator symbols that represent ISO 3166-1 codes for countries
I Implementations should render U+1F1E9 U+1F1EA as 🇩🇪

I If that’s not possible, use Roman letters (U+1F1E9 U+1F1EA = DE)
I Emoji skin color variation: Similar to character combination

I U+1F44C U+1F3FB = 👌🏻 U+1F44C U+1F3FF = 👌🏿

Session 2 30 / 34

https://util.unicode.org/UnicodeJsps/character.jsp?a=1F1E9
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F1EA
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F1E9
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F1EA
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F44C
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F3FB
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F44C
https://util.unicode.org/UnicodeJsps/character.jsp?a=1F3FF


Encoding

Not a solved problem

Session 2 31 / 34



Section 3

Summary



Summary

Summary

I Types and tokens
I Zipf distribution
I Type-Token-Ratio
I Encoding
I Unicode

Session 2 33 / 34



References I

Manning, Christopher D./Hinrich Schütze (1999). Foundations of Statistical Natural
Language Processing. Cambridge, Massachusetts and London, England: MIT Press.

Session 2 34 / 34


	Corpora
	Counting Words
	Types and Tokens
	N-Grams

	Encoding
	Summary
	Appendix
	References


