
Recap

▶ Git: Open source software to manage versions
▶ Commit: One specific version that knows its predecessor
▶ Branch: Multiple different commits can have the same predecessor, allowing parallel

development
▶ Merging

▶ Re-integrate parallel development
▶ Mostly automatic, but sometimes not

Reiter Fortgeschrittene Programmierung (Java 2) 1 / 17



How to Ask for Technical Support Howto▶ You may need to write to various people to get technical support
▶ Take a moment to think before clicking “send”

Ensure that
▶ you make it easy for the other person

▶ e.g., by including information the other person might first need to look up
▶ all relevant information is given (as far as you know)
▶ you use proper terminology (as far as you can)
▶ the context is still conceivable

▶ I.e., click on reply instead of writing a new mail, keep the old mail text in there
▶ references in your text are clear

▶ For instance: “this exercise” is not a clear reference
▶ you’re concise – long e-mails tend to be put on the read-later-pile (which may never

happen)



How to Ask for Technical Support Howto▶ You may need to write to various people to get technical support
▶ Take a moment to think before clicking “send”

Ensure that
▶ you make it easy for the other person

▶ e.g., by including information the other person might first need to look up
▶ all relevant information is given (as far as you know)
▶ you use proper terminology (as far as you can)
▶ the context is still conceivable

▶ I.e., click on reply instead of writing a new mail, keep the old mail text in there
▶ references in your text are clear

▶ For instance: “this exercise” is not a clear reference
▶ you’re concise – long e-mails tend to be put on the read-later-pile (which may never

happen)



Session 4: Iterable and Iterators
Fortgeschrittene Programmierung (Java 2)

Nils Reiter
nils.reiter@uni-koeln.de

8. Mai 2024



Section 1

Introduction and Motivation



Introduction and Motivation

Iterating

▶ Programs with only single variables are not very powerful
▶ Power comes from possibility to group things of the same type

▶ E.g., arrays: int[] myArray = new int[1,2,3,4,5,6,7,8,9];

▶ Arrays allow treating many things the same way, because they have a common name
▶ E.g.: myArray[i] = myArray[i] * 2;

▶ For this, we need a method to iterate over the elements of the array
▶ E.g.: for (int i = 0; i < myArray.length; i++) { }

▶ Iterating is such a central activity that Java offers different ways to do it
▶ for (...) {...}, while (...) {...}, do {...} while (...) Schleifen

Reiter Fortgeschrittene Programmierung (Java 2) 5 / 17

https://dh-cologne.github.io/java-wegweiser/articles/Schleifen.html


Introduction and Motivation

Iterating

▶ Programs with only single variables are not very powerful
▶ Power comes from possibility to group things of the same type

▶ E.g., arrays: int[] myArray = new int[1,2,3,4,5,6,7,8,9];

▶ Arrays allow treating many things the same way, because they have a common name
▶ E.g.: myArray[i] = myArray[i] * 2;

▶ For this, we need a method to iterate over the elements of the array
▶ E.g.: for (int i = 0; i < myArray.length; i++) { }

▶ Iterating is such a central activity that Java offers different ways to do it
▶ for (...) {...}, while (...) {...}, do {...} while (...) Schleifen

Reiter Fortgeschrittene Programmierung (Java 2) 5 / 17

https://dh-cologne.github.io/java-wegweiser/articles/Schleifen.html


Introduction and Motivation

Iterating

▶ Programs with only single variables are not very powerful
▶ Power comes from possibility to group things of the same type

▶ E.g., arrays: int[] myArray = new int[1,2,3,4,5,6,7,8,9];

▶ Arrays allow treating many things the same way, because they have a common name
▶ E.g.: myArray[i] = myArray[i] * 2;

▶ For this, we need a method to iterate over the elements of the array
▶ E.g.: for (int i = 0; i < myArray.length; i++) { }

▶ Iterating is such a central activity that Java offers different ways to do it
▶ for (...) {...}, while (...) {...}, do {...} while (...) Schleifen

Reiter Fortgeschrittene Programmierung (Java 2) 5 / 17

https://dh-cologne.github.io/java-wegweiser/articles/Schleifen.html


Introduction and Motivation

Iterating

▶ Programs with only single variables are not very powerful
▶ Power comes from possibility to group things of the same type

▶ E.g., arrays: int[] myArray = new int[1,2,3,4,5,6,7,8,9];

▶ Arrays allow treating many things the same way, because they have a common name
▶ E.g.: myArray[i] = myArray[i] * 2;

▶ For this, we need a method to iterate over the elements of the array
▶ E.g.: for (int i = 0; i < myArray.length; i++) { }

▶ Iterating is such a central activity that Java offers different ways to do it
▶ for (...) {...}, while (...) {...}, do {...} while (...) Schleifen

Reiter Fortgeschrittene Programmierung (Java 2) 5 / 17

https://dh-cologne.github.io/java-wegweiser/articles/Schleifen.html


Introduction and Motivation

Loops: for and while

▶ How to decide which loop to use?

▶ No technical difference, it’s about code clarity
▶ I.e., for future code readers, potentially yourself

Example
for (int i = 0; i < myArray.length; i++) { ... }
int i = 0; while (i < myArray.length) { i++; ... }

Reiter Fortgeschrittene Programmierung (Java 2) 6 / 17



Introduction and Motivation

Loops: for and while

▶ How to decide which loop to use?
▶ No technical difference, it’s about code clarity

▶ I.e., for future code readers, potentially yourself

Example
for (int i = 0; i < myArray.length; i++) { ... }
int i = 0; while (i < myArray.length) { i++; ... }

Reiter Fortgeschrittene Programmierung (Java 2) 6 / 17



Introduction and Motivation

Loops: for and while

▶ How to decide which loop to use?
▶ No technical difference, it’s about code clarity

▶ I.e., for future code readers, potentially yourself

Example
for (int i = 0; i < myArray.length; i++) { ... }
int i = 0; while (i < myArray.length) { i++; ... }

Reiter Fortgeschrittene Programmierung (Java 2) 6 / 17

Nils Reiter

Nils Reiter

Nils Reiter



What are Key Elements of Any Loop?

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Introduction and Motivation

Real-Life Problems

Example (File Search)
▶ 1000s of files
▶ Search term is a single word
▶ We’re interested in the first file with the word

▶ Solution so far
▶ Create an array with all contents of the files
▶ Iterate over the array
▶ Return the one we want, disregard all others

▶ Wasteful: Most file contents will probably never be read
▶ Incomplete: A file might be added on disk after having created the array
▶ Better: After inspecting each file, see if you need to load another

Reiter Fortgeschrittene Programmierung (Java 2) 8 / 17



Introduction and Motivation

Real-Life Problems

Example (File Search)
▶ 1000s of files
▶ Search term is a single word
▶ We’re interested in the first file with the word
▶ Solution so far

▶ Create an array with all contents of the files
▶ Iterate over the array
▶ Return the one we want, disregard all others

▶ Wasteful: Most file contents will probably never be read
▶ Incomplete: A file might be added on disk after having created the array
▶ Better: After inspecting each file, see if you need to load another

Reiter Fortgeschrittene Programmierung (Java 2) 8 / 17



Introduction and Motivation

Real-Life Problems

Example (File Search)
▶ 1000s of files
▶ Search term is a single word
▶ We’re interested in the first file with the word
▶ Solution so far

▶ Create an array with all contents of the files
▶ Iterate over the array
▶ Return the one we want, disregard all others

▶ Wasteful: Most file contents will probably never be read
▶ Incomplete: A file might be added on disk after having created the array
▶ Better: After inspecting each file, see if you need to load another

Reiter Fortgeschrittene Programmierung (Java 2) 8 / 17



Section 2

Iterator



Iterator

Iterator

▶ An interface in the Java library: java.util.Iterator  java.util.Iterator

▶ A iterator iterates once over a collection of objects

▶ Four methods (two have a default implementation):
boolean hasNext(): Returns true if there are more elements in the sequence
E next(): Returns the next element in the collection
void remove(): Removes the last element returned (optional)
void forEachRemaining(Consumer<? super E> a): Applies action to elements not yet returned
(optional)

Reiter Fortgeschrittene Programmierung (Java 2) 10 / 17

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html


Iterator

Iterator

▶ An interface in the Java library: java.util.Iterator  java.util.Iterator

▶ A iterator iterates once over a collection of objects
▶ Four methods (two have a default implementation):

boolean hasNext(): Returns true if there are more elements in the sequence
E next(): Returns the next element in the collection
void remove(): Removes the last element returned (optional)
void forEachRemaining(Consumer<? super E> a): Applies action to elements not yet returned
(optional)

Reiter Fortgeschrittene Programmierung (Java 2) 10 / 17

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
Nils Reiter



Iterator

Iterator
▶ An iterator object represents a specific iteration over a specific collection
▶ Iterators can (mostly) not be used twice
▶ Iterators are most naturally used in combination with while-loops:

1 Iterator iter = ...
2 while(iter.hasNext()) {
3 Object myObject = iter.next();
4 }

Benefits
▶ We only inspect/load as many elements as needed
▶ Object-oriented iteration: The iterator object represents the iteration itself
▶ Iterators make iterating easier (and object oriented) – they do not add something what

would be impossible otherwise

Reiter Fortgeschrittene Programmierung (Java 2) 11 / 17

Nils Reiter

Nils Reiter

Nils Reiter



Iterator

Iterator
▶ An iterator object represents a specific iteration over a specific collection
▶ Iterators can (mostly) not be used twice
▶ Iterators are most naturally used in combination with while-loops:

1 Iterator iter = ...
2 while(iter.hasNext()) {
3 Object myObject = iter.next();
4 }

Benefits
▶ We only inspect/load as many elements as needed
▶ Object-oriented iteration: The iterator object represents the iteration itself
▶ Iterators make iterating easier (and object oriented) – they do not add something what

would be impossible otherwise

Reiter Fortgeschrittene Programmierung (Java 2) 11 / 17



demo
Student.java, StudentIterator.java



Section 3

Iterable



Iterable

Iterable

▶ An interface in the Java library: java.lang.Iterable
▶ Provides a single (non-default) method: Iterator<T> iterator()

▶ I.e.: the method returns an Iterator

▶ An object that implements Iterable
▶ is iterable, i.e., can be iterated on
▶ can be used in a for-loop like this:

1 for (Object o : myIterable) {
2 o.doSomething();
3 }

Reiter Fortgeschrittene Programmierung (Java 2) 14 / 17

Nils Reiter



Iterable

Iterable

▶ An interface in the Java library: java.lang.Iterable
▶ Provides a single (non-default) method: Iterator<T> iterator()

▶ I.e.: the method returns an Iterator
▶ An object that implements Iterable

▶ is iterable, i.e., can be iterated on
▶ can be used in a for-loop like this:

1 for (Object o : myIterable) {
2 o.doSomething();
3 }

Reiter Fortgeschrittene Programmierung (Java 2) 14 / 17

Nils Reiter

Nils Reiter



demo



Generics

Generics

Topic for next week, but:
▶ Some classes are written with angle brackets: Iterator<Student> / Iterable<Student>

▶ Angle brackets contain the type that we iterate over
▶ This allows us to re-use the same code to iterate over different tyes!

Reiter Fortgeschrittene Programmierung (Java 2) 16 / 17

Nils Reiter



Exercise

Exercise

https://github.com/idh-cologne-java-2-summer-2024/exercise-04

Reiter Fortgeschrittene Programmierung (Java 2) 17 / 17

https://github.com/idh-cologne-java-2-summer-2024/exercise-04

	Introduction and Motivation
	Iterator
	Iterable
	Generics
	Exercise

