
Recap

▶ Git: Open source software to manage versions
▶ Commit: One specific version that knows its predecessor
▶ Branch: Multiple different commits can have the same predecessor, allowing parallel

development
▶ Merging

▶ Re-integrate parallel development
▶ Mostly automatic, but sometimes not
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How to Ask for Technical Support Howto▶ You may need to write to various people to get technical support
▶ Take a moment to think before clicking “send”

Ensure that
▶ you make it easy for the other person

▶ e.g., by including information the other person might first need to look up
▶ all relevant information is given (as far as you know)
▶ you use proper terminology (as far as you can)
▶ the context is still conceivable

▶ I.e., click on reply instead of writing a new mail, keep the old mail text in there
▶ references in your text are clear

▶ For instance: “this exercise” is not a clear reference
▶ you’re concise – long e-mails tend to be put on the read-later-pile (which may never

happen)
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Introduction and Motivation

Iterating

▶ Programs with only single variables are not very powerful
▶ Power comes from possibility to group things of the same type

▶ E.g., arrays: int[] myArray = new int[1,2,3,4,5,6,7,8,9];

▶ Arrays allow treating many things the same way, because they have a common name
▶ E.g.: myArray[i] = myArray[i] * 2;

▶ For this, we need a method to iterate over the elements of the array
▶ E.g.: for (int i = 0; i < myArray.length; i++) { }

▶ Iterating is such a central activity that Java offers different ways to do it
▶ for (...) {...}, while (...) {...}, do {...} while (...) Schleifen
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Introduction and Motivation

Loops: for and while

▶ How to decide which loop to use?

▶ No technical difference, it’s about code clarity
▶ I.e., for future code readers, potentially yourself

Example
for (int i = 0; i < myArray.length; i++) { ... }
int i = 0; while (i < myArray.length) { i++; ... }
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What are Key Elements of Any Loop?
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Introduction and Motivation

Real-Life Problems

Example (File Search)
▶ 1000s of files
▶ Search term is a single word
▶ We’re interested in the first file with the word

▶ Solution so far
▶ Create an array with all contents of the files
▶ Iterate over the array
▶ Return the one we want, disregard all others

▶ Wasteful: Most file contents will probably never be read
▶ Incomplete: A file might be added on disk after having created the array
▶ Better: After inspecting each file, see if you need to load another
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Iterator



Iterator

Iterator

▶ An interface in the Java library: java.util.Iterator  java.util.Iterator

▶ A iterator iterates once over a collection of objects

▶ Four methods (two have a default implementation):
boolean hasNext(): Returns true if there are more elements in the sequence
E next(): Returns the next element in the collection
void remove(): Removes the last element returned (optional)
void forEachRemaining(Consumer<? super E> a): Applies action to elements not yet returned
(optional)
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Iterator

Iterator
▶ An iterator object represents a specific iteration over a specific collection
▶ Iterators can (mostly) not be used twice
▶ Iterators are most naturally used in combination with while-loops:

1 Iterator iter = ...
2 while(iter.hasNext()) {
3 Object myObject = iter.next();
4 }

Benefits
▶ We only inspect/load as many elements as needed
▶ Object-oriented iteration: The iterator object represents the iteration itself
▶ Iterators make iterating easier (and object oriented) – they do not add something what

would be impossible otherwise
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demo
Student.java, StudentIterator.java
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Iterable

Iterable

▶ An interface in the Java library: java.lang.Iterable
▶ Provides a single (non-default) method: Iterator<T> iterator()

▶ I.e.: the method returns an Iterator

▶ An object that implements Iterable
▶ is iterable, i.e., can be iterated on
▶ can be used in a for-loop like this:

1 for (Object o : myIterable) {
2 o.doSomething();
3 }
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Generics

Generics

Topic for next week, but:
▶ Some classes are written with angle brackets: Iterator<Student> / Iterable<Student>

▶ Angle brackets contain the type that we iterate over
▶ This allows us to re-use the same code to iterate over different tyes!
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Exercise

https://github.com/idh-cologne-java-2-summer-2024/exercise-04
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