Automated Template
Engineering

Artur Komaristych, Lukas Wilkens, Mariia Galevskaia, Frederik Schmeiler

Structure

- Introduction to Manual Template Engineering
Demonstration Designing

- Automated Template Engineering Techniques
Prompt Mining
Prompt Paraphrasing

Prompt Generation
Prompt Scoring

- Experiments

- Deep Dive: BERTese

- Deep Dive: Prefix Tuning
- Conclusion

- Sources

From Manual to Automatic

Last Week: Manual ways of creating prompt templates

Some weaknesses:

1. Manual prompting requires a lot of time and expertise
2. Manually finding optimal prompts is often impossible

The Solution: Automated Template Generation

Introduction - Automated Template Engineering

Templates can be created / improved through numerous processes

Some distinctions:

Cloze vs. Prefix
Static vs. Dynamic

Discrete vs. Continuous

Cloze vs. Prefix

Cloze = Masked Token inside of the prompt

“I love this movie, it is a [Z] movie”

Prefix = Prompt precedes answer-space

“I love this movie. What’s the sentiment of the review? [Z]”

Static vs. Dynamic

Static = Use the same prompt-template for each input
“IX] founded [Z]”
‘Jeff Bezos founded [Z]”

“Bill Gates founded [Z]”

Dynamic = Generate a custom template for each input

“Mark Zuckerberg founded [Z]”
‘Jeff Bezos is the founder of [Z]”

“Bill Gates created [Z]”

Discrete vs. Continuous

Discrete = Strings of text

“Who is the president of the United States? [Z]”

Continuous = Prompt is described in embedding-space

Token String Token ID Embedded Token Vector

'<s>' -> 0 -> [0.1150, -0.1438, 0.0555, ...]
'<pad>' -> 1 -> [0.1149, -0.1438, 0.0547, ...]
'</s>' -> 2 -> [0.0010, -0.0922, 0.1025, ...]
'<unk>' -> 3 -> [60.1149, -0.1439, 0.0548, ...]
L= 4 -> [-0.0651, -0.0622, -0.0002, ...]

' the' -> 5 -> [-0.0340, 0.0068, -0.0844, ...]
', -> 6 -> [0.0483, -0.0214, -0.0927, ...]
'to' -> 7 -> [-0.0439, 0.60201, 0.0189, ...]
'and' -> 8 -> [0.0523, -0.0208, -0.0254, ...]
' of' -> 9 -> [-0.0732, 0.0070, -0.0286, ...]
'a' -> 10 -> [-0 1

.0194, 0.0302, -0.0838, ...

How would you automate Template Generation?

Which aspects / parts of prompts could be improved automatically?

What methods / tools could be used for this?

Demonstration Designing

Connection: Template Design and ICL = Few Shot Prompting

How do you find the best examples for ICL?

= You automate the process!

Split into Demonstration Organization and Formatting

Demonstration Organization

= Which examples in what order

Demonstration Selection = Finding good examples

- Unsupervised methods
Nearest Neighbours
Information overlap
Perplexity and diversity
Let LLMs generate the examples

Demonstration Ordering = Finding an effective order

- Automatic sorting based on proximity and entropy scores

175 seed tasks with
1 instruction and
1 instance per task

Step 4: Filtering

. : : Step 2: Classification
Task Pool Step 1: Instruction Generation Task Identification

-

s

famous person on this topic.

\'/: Instruction : Give me a quote from a
v q
v

EE

Step 3: Instance Generation

Instruction : Find out if the given text is in favor of or against abortion.

Class Label: Pro-abortion

Input: Text: I believe that women should have the right to choose whether or not

; Output-first
they want to have an abortion. ®

Instruction : Give me a quote from a famous person on this topic.

Input: Topic: The importance of being honest. J

Output: "Honesty is the first chapter in the book of wisdom." - Thomas Jefferson Input-first

Automated Template Engineering
Techniques

Prompt Mining
Distant Supervision Assumption: If two words x <subject>, y <object> participate in
a relation r, then any sentence that contain those two words might express r.

Idea: Mine sentences containing x and y from Websites, e.g., Wikipedia, and extract
them as templates.

Input: x <subject> and y <object>
= Output: Template describing the relation r
WIKIPEDIA WIKIDATA

Source: How Can We Know What Language Models Know? (2021)

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00324/96460/How-Can-We-Know-What-Language-Models-Know

Prompt Mining

Example: (Barack Obama, Hawaii)

1. Search for sentences that contain Barack Obama and Hawaii.
a. Wikipedia: Barack Obama was born in Hawaii.

2. Substitute Barack Obama and Hawaii with placeholders.
a. Template: [X] was born in [Y].

Middle-word Prompts: [X] middle words [Y]

Source: How Can We Know What Language Models Know? (2021)

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00324/96460/How-Can-We-Know-What-Language-Models-Know

Prompt Mining

Dependency-based Prompts

Idea: Build Prompts based on the shortest dependency path between the subject
and object in the dependency path.

1. Sentence: The capital of France is Paris

2. Build dependency path from sentence
a. France (pobj) « of (prep) « capital (nsubj) « is (attr) = Paris

3. Assemble prompt as the path from the leftmost word to the rightmost word in
the dependency path.

Template: capital of [X]is [Y]

Source: How Can We Know What Language Models Know? (2021)

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00324/96460/How-Can-We-Know-What-Language-Models-Know

Prompt Paraphrasing

Idea: Take in an existing seed prompt, paraphrase it into a set of other candidate
prompts, and then selects the one that achieves the highest training accuracy on

the target task.

e Round-trip translation: Translate prompt into another language then back
® Replacement of phrases from a thesaurus
e Neural prompt rewriters, e.g., PRewrite

Source: How Can We Know What Language Models Know? (2020), BARTScore: Evaluating Generated Text as Text Generation (2021)

https://doi.org/10.1162/tacl_a_00324
https://arxiv.org/abs/2106.11520

Prompt Paraphrasing

Round-trip translation: Translate existing Prompt to different languages, e.g., EN »
DE » RU » EN

1. [X]was born in the city of [Y]

2. [X]wurde in der Stadt [Y] geboren
3. [X]epopeHBrpaglY]

4. [X]was bornin[Y]

Source: How Can We Know What Language Models Know? (2020), BARTScore: Evaluating Generated Text as Text Generation (2021)

https://doi.org/10.1162/tacl_a_00324
https://arxiv.org/abs/2106.11520

Prompt Paraphrasing

Replacement of phrases from a thesaurus: Replace words with Synonyms and
Antonyms

1. [X]was born in the city of [Y]
2. [X]was born in the metropolitan area of [Y]
3. [X] was brought into this world in the metropolitan area of [Y]

Source: How Can We Know What Language Models Know? (2020), BARTScore: Evaluating Generated Text as Text Generation (2021)
D

https://doi.org/10.1162/tacl_a_00324
https://arxiv.org/abs/2106.11520

Prompt Generation

|dea: Treat the generation of prompts as a text generation task and use standard
natural language generation models, e.g., seq2seq T5, to generate prompts.

T5 functionality:

Input: “Thank you <X> me to your party <Y> week”

Output: “<X> for inviting <Y> last <Z>”

Source: PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains (2022), Making Pre-trained Language Models Better Few-shot Learners (2021)

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00468/110538/PADA-Example-based-Prompt-Learning-for-on-the-fly
https://arxiv.org/abs/2012.15723

Prompt Generation (Finetuning)

Template Label words| Accuracy
Step 1: Find ideal label words SST-2 (positive/negative) mean (std)
<S> It was [MASK] . great/terrible] 92.7 (0.9)
<S1> It was [MASK] . good/bad 92.5 (1.0)
<S1> It was [MASK] . cat/dog 91.5(1.4)
<S1> It was [MASK] . dog/cat 86.2 (5.4)
<S> It was [MASK] . terrible/great] 83.2 (6.9)
Fine-tuning - 81.4 (3.8)

Step 2: Generate good templates based on label words

”
|A fun ride. <x> great <y>|---------- -_-_
! T
|A pleasure to watch. <x> great <y>|-{' : : Decode
!
!
\———Training examples for label:positive ———— E i <Sl> This is [MASK
(i N ! <Sl>A [MASK] one
|No reason to watch. <x> terrible <Y>|- -
1
IThis junk. <x> terrible <Y>|— --------- i — Gereratad templates
Fme-tune and
evaluate

L'I‘raining examples for label:negative ————

positive: great, negative: temblel I <S:i> A [MASK] one.|
Label mapping M()) Best template

Source: PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains (2022), Making Pre-trained Language Models Better Few-shot Learners (2021)

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00468/110538/PADA-Example-based-Prompt-Learning-for-on-the-fly
https://arxiv.org/abs/2012.15723

Prompt Generation (PADA)

DRFs = Domain Related Features

First Step: Generate DRFs and Domain

Second Step: Append DRFs to Prompt

Domain:
Input

The food was cold and the seats
were uncomfortable.

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00468/110538/PADA-Example-based-Prompt-Learning-for-on-the-fly
https://arxiv.org/abs/2012.15723

Prompt Scoring

|ldea: Build templates from head-relation-tail triple x = (h, r, t)

Input: (musician, CapableOf, play musical instrument)

“HEAD is capable of TAIL”
“HEAD is able to TAIL"
“HEAD has the ability to TAIL”

Source: Commonsense Knowledge Mining from Pretrained Models (2019)
D

https://doi.org/10.18653/v1/D19-1109

Prompt Scoring

|ldea: Build templates from head-relation-tail triple x = (h, r, t)

Input: (musician, CapableOf, play musical instrument)

e “HEAD is capable of TAIL”
o “Musician is capable of play musical instrument”
e “HEAD is able to TAIL”
o “Musician is able to play musical instrument”
e “HEAD has the ability to TAIL”
o “Musician has the ability to play musical instrument”

Source: Commonsense Knowledge Mining from Pretrained Models (2019)
D

https://doi.org/10.18653/v1/D19-1109

Prompt Scoring

Resulting “raw” prompts are then refined in order to fix grammar issues etc.

e “HEAD is capable of TAIL”

o “Musician is capable of playing a musical instrument”
e “HEAD is able to TAIL”

o “Musician is able to play a musical instrument”
e “HEAD has the ability to TAIL”

o “Musician has the ability to play a musical instrument”

Source: Commonsense Knowledge Mining from Pretrained Models (2019)
D

https://doi.org/10.18653/v1/D19-1109

Prompt Scoring

Lastly, all prompts are evaluated by an LMM and the one with the highest likelihood
for producing the correct result is selected.

Candidate Sentence .S; log p(S;)
“musician can playing musical instrument” —9.7
“musician can be play musical instrument” —4.9
“musician often play musical instrument” —95.9

“a musician can play a musical instrument” —2.9

Source: Commonsense Knowledge Mining from Pretrained Models (2019)
D

https://doi.org/10.18653/v1/D19-1109

Prompt Scoring

Lastly, all prompts are evaluated by an LMM and the one with the highest likelihood
for producing the correct result is selected.

Candidate Sentence .S; log p(S;)
“musician can playing musical instrument” —9.7
“musician can be play musical instrument” —4.9
“musician often play musical instrument” —95.9

“a musician can play a musical instrument” —2.9

Source: Commonsense Knowledge Mining from Pretrained Models (2019)
D

https://doi.org/10.18653/v1/D19-1109

Experiments

BERTese: Learning to Speak to BERT

Adi Haviv, Jonathan Berant and Amir Globerson (2021)

Why was BERTese created?

e Previous approaches to knowledge retrieval often struggled with
determining why the BERT model could not correctly answer a query —
whether due to a lack of knowledge or a misunderstanding of the query.

e To address this issue, the authors proposed an automatic query
reformulation method, enabling the model to better understand and
process queries, leading to more accurate responses.

Structure of the BERTese Model

(e)
1

Predictor
(Off-The-Shelf Pretrained BERT)

1. Anfragen-Umformulierer (Rewriter) T

[Q: will & grace is originally aired on [MASK].]

T

[Nearest Neighbors J(

!

[Rewriter

2. Pradiktor (Predictor)

BERT
Embeddings
Vocabulary

(Identity Pretrained BERT)

1

[Q: will & grace was originally aired on [MASK].]

Rewriter Pre-training

Loss functions:
e \Valid Token Loss (VTL)

e Single [MASK] Loss (SML)

e Prediction loss

Valid Token Loss (VTL)

e Encourages the use of correct language tokens.

(original masked query) (rewritten masked query)

Q:*The capital of France is [MASK]” — Q:"France’s capital is [MASK]"

“France’s capittal is [MASK]”

(“capittal” is an incorrect token)

Single [MASK] Loss (SML)
e Ensures that exactly one [MASK] token is included in the

reformulated query.

e Signals the model, what word should be replaced or
completed.

e The precise place of token plays a crucial role in the accuracy
of an answer.

Prediction Loss + Straight-Through Estimator (STE)

e Minimises the difference between the predicted and correct
answers. STE allows the training of non-differentiable operations,
which is crucial for working with discrete tokens.

(rewritten masked query) (rewritten masked query)
Q: “France’s capital is [MASK]” Q: “France’s capital is [MASK]"
A: Paris A: Lyon x

L(Yirnes Yprea) = 0 I Ypred — Yrue L(Yirne, "Liyon”) > L(Yirues Yirue)

Prediction loss

1,00
[

0,75 ©

0,50

®
0,25
@
@
@
0,00 L
Paris Lyon Aachen Berlin Main Felix braun

Evaluation of Functionality and Efficiency of the Model

Evaluierung:

e LAMA (Petroni et al., 2019) — collection of cloze-style queries about
relational facts with a single token answer.

e T-Rex (Elsahar et al., 2018) — constructed out of 41 relations, each
associated with at most 1000 queries from Wikidata.

For model’s training:

e T-Rex-train (Jiang et al., 2020) — constructed from Wikidata, no
overlap with original T-Rex.

Baselines

Corpus BERT FT-BERT LPAQA BERTese
T-REx 31.1 36 34.1 38.3

BERTbase (Petroni et al., 2019) — no fine-tuning.
LPAQA (Jiang et al., 2020) — based on mining additional paraphrase

queries.
e FT-BERT — end-to-end differentiable BERTbase model, fine-tuned on

T-Rex-train to output the correct answer.

Modifications made by BERTese

Modification Original Masked Query Bertese Masked Query

71" removed yahoo! tech is owned by [MASK]. yahoo tech is owned by [MASK].

verb patterns working dog is a subclass of [MASK]. work dog is a subclass of [MASK].

was — is will & grace was originally aired on [MASK]. will & grace is originally aired on [MASK].

a — the tom terriss is a [MASK] by profession. tom terriss is the [MASK] by profession.
rephrasing istanbul hezarfen airfield is named after [MASK]. istanbul hezarfen airport is named after [MASK].

token — [SEP]

lubka kolessa plays [MASK].

[SEP]ka kolessa plays [MASK].

Ablation Study

e here the general functionality of

the model is checked Ablation P@l1

No auxilary losses 20,5

e at this step, some components or SML 36.6
functions are being taken out from '

the model, to look what effect it VIL 37.5

has on its functionality SML + VTL (BERTese) 38.3

e P@1 = precision at one

Part of Speech Analysis

POS Tag Frequency

e more than 70% — nouns (NN) and NN 47.6%
verbs (VBN) VBN 23%
DT 15.3%
® 15% — determiners (DT) i | 4.4%
CD 3%
NNP 1.7%
NNS 1.3%

*JJ — adjectives, CD — numerals, NNP — proper noun sg., NNS — proper noun pl.

Conclusion

e This approach substantially improves the interaction with LLMs.

e By automatically reformulating queries, the understandability for the
model is increased, resulting in more accurate answers.

e The results of the experiments confirm the effectiveness and utility of
this approach in various application scenarios.

Prefix-Tuning: Optimizing Continuous Prompts for
Generation

Xiang Lisa Li, Percy Liang (2021)

Prefix Tuning - Idea

Goal: Optimize LLM for multiple downstream tasks at once

Similar to prompting > Adds continuous, task-specific vectors, not real tokens
Not limited to real tokens, more “precise”
Because the prefix-vectors are continuous, there are no examples for them

Alternative to fine-tuning, LLM parameters are frozen
Intuition: Steer the LLM in the right direction

Prefix Tuning - “Example”

Autoregressive Model (e.g. GPT2)
PREFIX Wi (source table) y (target utterance)

I il |3 il
<

Harry Potter , Education, Hogwarts [SEP] Harry Potter is graduated from Hogwarts

Activaion M1 ha hs ha hs he hy hs hg hig hi1 hiz hiz hia his

Indexing Ll ZJE 4 5 6 7 SJLQ 10 11 12 13 14 15 1
= 1) Xiax = [3,4,5,6,7, 8] Yide = [9,10,11,12 13,14, 15|

Encoder-Decoder Model (e.g. BART)

Summarization Example

Article: Scientists at University College London discovered people tend to
think that their hands are wider and their fingers are shorter than they truly
are.They say the confusion may lie in the way the brain receives information
from different parts of the body.Distorted perception may dominate in some
people, leading to body image problems ... [ignoring 308 words] could be very
motivating for people with eating disorders to know that there was a biological
explanation for their experiences, rather than feeling it was their fault."

Summary: The brain naturally distorts body image - a finding which could
explain eating disorders like anorexia, say experts.

I (source table) PREFIX
I e I 1 T T Y Crrpcuitornace 1 Table-to-text Example
A4 Harry Potter , Education , Hogwarts [SEP] Harry Potter is graduated from Hogwarts Table: name[Clowns] customer-rating[1 out of 5] eatType[coffee
shop] food[Chinese] area[riverside] near[Clare Hall]
Activaion hy he hs hs hs he hy hg hg hio hi1 hiz haz his his his Tz
Textual Description: Clowns is a coffee shop in the riverside area
1112000 14 1 1 17
Indexing 1 il 2 1 lj 4 5 6 7 8 1 1 9 10 11 3 > 6 1 near Clare Hall that has a rating 1 out of 5 . They serve Chinese
food .
Piax = [1,2] Xiax = [3,4, 5,6, 7, 8] Pigx +=[9,10] Yiax = [11,12,13, 14, 15,16, 17]

Li, Liang (2021)

Prefix Tuning - Evaluation

- Evaluated for summarization (BART) & table to text (GPT-2)

- One dataset for summarization

- Three datasets for table to text

- Compared to fine-tuning, lightweight fine-tuning, adapter tuning

- Metrics:
Table to text: BLEU, METEOR, TER, ... (Others depending on dataset)
Summarization: ROUGE

- Prefix size: 01% new, task-specific parameters (ca. 250k)

Prefix Tuning - Table to Text

E2E WebNLG DART
BLEU NIST MET R-L CIDEr BLEU MET TER | BLEU MET TER| Mover BERT BLEURT
S U A S U A S U A
GPT-2MEDIUM
FT-FULL 688 871 46.1 71.1 243 |64.7 26.7 457 046 030 0.38 0.33 0.78 0.54| 462 039 046 050 094 0.39
FT-toP2 68.1 8.59 46.0 70.8 241 |53.6 189 36.0 0.38 0.23 0.31 0.49 099 0.72| 41.0 034 0.56 043 0.93 0.21

ADAPTER(3%) 689 871 46.1 713 247 [60.5 47.9 548 043 038 041 035 046 039| 452 038 046 050 094 0.39
ADAPTER(0.1%) 663 8.41 450 698 240 [54.5 45.1 50.2 0.39 036 0.38 040 0.46 043 | 424 036 048 047 094 0.33
PREFIX(0.1%) 703 882 463 721 246 |629 453 55.0 044 037 041 035 051 042 464 038 046 050 0.94 0.39

GPT-2L ARGE
FT-FULL 68.5 878 46.0 699 245 |65.3 43.1 555 046 038 0.42 0.33 0.53 042| 470 039 046 051 094 0.40
Prefix 703 885 46.2 717 247 (634 47.7 563 045 039 042 034 048 040 | 467 039 045 051 094 0.40
SOTA 68.6 870 453 70.8 2.37 |63.9 52.8 57.1 046 041 044 - - - | - - - - - -

Li, Liang (2021)

Prefix Tuning - Summarization Results

R-1t R-21 R-L1%
FT-FULL(Lewis et al., 2020) 45.14 22.27 37.25
PREFIX(2%) 43.80 20.93 36.05
PREFIX(0.1%) 42.92 20.03 35.05

Performance on XSUM Dataset Li, Liang (2021)

Prefix Tuning - Results (Summarized)

Table to text:

- Outperforms other light-weight approaches

- Similar performance to full fine-tuning

- Prefix tuning outperforms fine-tuning in low data setting

- More efficient: similar performance, with fewer parameters (30x)

Summarization:

- Fine-tuning outperforms prefix tuning
- Prefix tuning outperforms fine-tuning in low data setting

Fine tuning seems more appropriate for complex tasks and more data
Prefix tuning may be a good alternative to lightweight fine-tuning

Conclusion

e Automated Template Engineering has advantages over Manual

o Faster template generation

o More efficient / “ideal” templates

o More and better options compared to manual engineering
o => Better knowledge elicitation

e However: Not necessarily intuitive / understandable (e.g. prefix tuning)

e A good response is relative to the goal, real life use cases commonly more
challenging

e Human-Machine interaction as knowledge bottleneck

Sources

Dong, Qingxiu, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, Lei Li, and Zhifang Sui. “A Survey on In-Context Learning,” 2023. https://arxiv.ora/abs/2301.00234.

Eyal Ben-David, Nadav Oved, Roi Reichart. “PADA: Example-based Prompt Learning for on-the-fly Adaptation to Unseen Domains.” Transactions of the Association for Computational Linguistics 2022; 10 414-433.
doi: https://doi.org/10.1162/tacl_a_00468

Haviv, Adi, Jonathan Berant, and Amir Globerson. “BERTese: Learning to Speak to BERT.” In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main
Volume, edited by Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty, 3618-23. Online: Association for Computational Linguistics, 2021. https://doi.ora/10.18653/v1/2021.eacl-main.316.

Li, Xiang Lisa, and Percy Liang. “Prefix-Tuning: Optimizing Continuous Prompts for Generation.” In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), edited by Chengqging Zong, Fei Xia, Wenjie Li, and Roberto Navigli, 4582—-97. Online: Association for Computational Linguistics, 2021.
https://doi.org/10.18653/v1/2021.acl-long.353.

Liu, Pengfei, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. “Pre-Train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing.” ACM
Comput. Surv. 55, no. 9 (January 2023). https://doi.ora/10.1145/3560815.

Tianyu Gao, Adam Fisch, and Dangi Chen. “Making pre-trained language models better few-shot learners.” In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL’21). 2021.

Wang, Yizhong, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh Hajishirzi. 2022b. Self-instruct: Aligning language model with self generated instructions. ArXiv preprint,
abs/2212.10560. https://arxiv.ora/abs/2212.10560

Zhou, Denny, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. 2022. Least-to-most prompting enables complex reasoning in large
language models. ArXiv preprint, abs/2205.10625. https://arxiv.org/abs/2205.10625

Zhou, Yongchao, Andrei loan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy Ba. 2022c. Large language models are human-level prompt engineers. ArXiv preprint, abs/2211.01910.
https://arxiv.ora/abs/2211.01910

https://arxiv.org/abs/2301.00234
https://doi.org/10.1162/tacl_a_00468
https://doi.org/10.18653/v1/2021.eacl-main.316
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.1145/3560815
https://arxiv.org/abs/2212.10560
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2211.01910

