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What is Manual Template Engineering?

▶ Definition:

▶ Creating specific input formats (templates) for AI models.

▶ Guides the responses of AI.

▶ Purpose:

▶ Improves the accuracy and quality of AI responses.
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Advantages

▶ Improved Accuracy: Enhances the precision of responses by
reducing ambiguity.

▶ Consistency: Ensures uniformity in responses across different
instances.

▶ Efficiency: Reduces the need for extensive post-processing or
corrections.

▶ User Satisfaction: Leads to more relevant and satisfactory
interactions for end-users.
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2. PROMPTING TECHNIQUES
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What prompting techniques do you know?

(or: How would you structure your prompts?)
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Tips for structurizing your prompts

▶ Be specific but avoid unnecessary details
▶ Use Keywords

▶ ”Write”
▶ ”Classify”
▶ ”Summarize”
▶ ”Translate”
▶ ”Order”

▶ Experiment with different prompts

▶ Context Setting

▶ Separate instruction and context (e.g., ‘‘, ‘”””‘)

▶ Articulate the desired output format
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Prompting techniques

1. Zero-Shot Prompting

2. Few-Shot Prompting

3. Chain-of-Thought Prompting

4. Generate Knowledge Prompting

5. Tree of Thoughts
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Zero-Shot Prompting: Definition and Advantages

▶ Definition: AI models can perform tasks without specific
training.

▶ Advantages:
▶ Versatility: Handles various tasks without task-specific

training.
▶ Efficiency: Saves time and resources by not needing

task-specific data.
▶ Adaptability: Quickly adjusts to new tasks with minimal

modifications.
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Zero-Shot Prompting: Example and Applications

▶ Example:
▶ Prompt:

“‘Classify the text into neutral, negative or positive.
Text: I think the vacation is okay.
Sentiment:“‘

▶ Response: Neutral

▶ Applications:
▶ Language translation
▶ Text summarization
▶ Question answering
▶ Content generation
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Few-Shot Prompting: Definition and Advantages

▶ Definition: AI models learn from a few examples to perform
tasks.

▶ Advantages:
▶ Flexibility: Adapts to various tasks with minimal examples.
▶ Scalability: Scales efficiently with a small dataset.
▶ Accuracy: Maintains high performance with limited data.
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Few-Shot Prompting: Example and Applications

▶ Example:
▶ Prompt:

“‘This is awesome! // Negative
This is bad! // Positive
Wow that movie was rad! // Positive
What a horrible show¡“//

▶ Response: Negative

▶ Applications:
▶ Content summarization
▶ Sentiment analysis
▶ Text classification
▶ Document categorization
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Arithmetic Tasks

Wei et al. 2022
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Chain-of-Thought Prompting

Aim: enable complex reasoning capabilities through intermediate
reasoning steps; generate a chain of thought

Why?
→ insight into reasoning path of LM (facilitates debugging)
→ useful for math word problems, commonsense reasoning, and
symbolic manipulation
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Chain-of-Thought Prompting

Wei et al. 2022

14 / 63



Limitations

▶ High scale models → high performance

▶ Effectiveness of LM reliant on complexity of problem

▶ Uncertainty whether LM is actually ”reasoning”

▶ Costly to serve in real-world applications
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Zero-shot CoT Prompting

Add ”Let’s think step-by-step” to the original prompt
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Zero-shot CoT Prompting

Add ”Let’s think step-by-step” to the original prompt

Kojima et al. 2022

17 / 63



Automatic CoT

Eliminate manual efforts by leveraging LLMs with ”Let’s think step
by step” prompt to generate reasoning chains for demonstrations
one by one

Two stages:
(1) Question clustering: partition questions of a given dataset
into clusters
(2) Demonstration sampling: select a representative question
from each cluster and generate its reasoning chain using
zero-shot-CoT
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Automatic CoT

Zhang et al. 2022
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Generate Knowledge Prompting

Popular idea: incorporate knowledge to help the model make
more accurate ideas
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Generate Knowledge Prompting

Popular idea: incorporate knowledge to help the model make
more accurate ideas

→ Can the model also be used to generate knowledge before
making a prediction? (Liu et al. 2021)
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Generate Knowledge Prompting: Knowledge

Prompt
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Generate Knowledge Prompting: Knowledge

Prompt

Knowledge 1
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Generate Knowledge Prompting: Knowledge
Prompt

Knowledge 1

Knowledge 2

Liu et al. 2021
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Generate Knowledge Prompting: Prediction

→ Integrate knowledge and get a prediction

Example based on Knowledge 1:
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Generate Knowledge Prompting: Prediction

→ Integrate knowledge and get a prediction

Example based on Knowledge 2:
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Tree of Thoughts

Main idea:

1. Generate multiple reasoning paths for one question/problem

2. Evaluate reasoning paths in accordance with criteria

3. Expand and prune

4. Choose final path based on the highest score
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Tree of Thoughts

Yao et al. 2024
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3. LANGUAGE MODELS AS
KNOWLEDGE BASES
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3.1. The LAMA probe

LAnguage Model Analysis probe (Petroni et al., 2019)

→ How much knowledge is present in pretrained Language Models?
→ Can pretrained LLMs outperform state-of-the-art NLP methods
in receiving knowledge?
→ How does the performance of LLMs differ for different kinds of
knowledge (relational, common sense, factual)?

”Knowledge:”

▶ (subject, relation, object)

▶ (question, answer)
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3.1. The LAMA probe

Procedure

▶ manually convert ”knowledge” (from existing knowledge
sources) into cloze-statements

▶ Example: (Einstein, born in, Ulm) → ”Einstein was born in
[MASK]”

▶ ask models to predict the masked token/missing object
([MASK])

Assumption: LLM ”knows” a fact, if it can predict a single object
[MASK] or answer [MASK] token.
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3.1. The LAMA probe: Considerations

1. Manually defined templates

2. Single token prediction
→ only single token objects as prediction targets
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3.1. The LAMA probe: Considerations

3. Object slot predictions
→ only query object slots not subject or relation slots
→ relations can be expressed with many different wordings: what
would be the correct pattern for a relation?

4. Intersection of Vocabularies
→ intersection of the vocabulary all models were trained on -
about 21k tokens
→ every model can only rank tokens of that vocabulary
→ the larger the vocabulary, the harder to rank correct token
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3.2. Knowledge sources

▶ Google-RE

▶ T-REx

▶ ConceptNet

▶ SQuAD
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3.2. Knowledge sources

1. Google-RE

→ about 60k facts from Wikipedia
→ 3 relations (place of birth, date of birth, place of death)
→ manually defined templates
2. T-REx
→ 41 relations with about 1000 facts per relation from Wikidata
→ manually defined templates
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3.3. Language Models vs. Baselines

Language Models:

▶ fairseq-fconv (Fs)

▶ Transformer-XL (Txl)

▶ ELMo base (Eb)

▶ ELMo 5.5 (E5B)

▶ BERT base (Bb)

▶ BERT large (Bl)
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3.3. Language Models vs. Baselines

Exercise 2 (see colab)
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3.3. Language Models vs. Baselines

Metrics for LLMs: Ranking and mean precision at k (P@k)

▶ model generates output-prediction layer (logits) for possible
objects which are just unnormalized numbers (eg. [2.3, -0.5,
4.6])

▶ softmax function is applied to those logits which converts the
raw scores into probabilities that sum up to 1 (eg.
[0.878,0.045,0.077])

▶ those probabilities are ranked in descending order (first
position = highest probability)

▶ k is the number of predictions we consider

▶ if ground truth object is among these top k predictions, it’s
counted as a correct prediction

▶ calculate mean precision by dividing the correct predicted
objects by all predicted objects
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3.3. Language Models vs. Baselines

Baselines:
= existing methods/systems commonly used for relation
knowledge extraction

▶ Freq (Freq)

▶ Relation Extraction with naiive entity linking (REn)

▶ Relation Extraction with oracle entity linking (REo)

▶ DrQA
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3.5. Results

Results with p@1:

Petroni et al. (2019)
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3.5. Results

Results with p@1:

▶ used ”standard” template for each relation

▶ Suprising: REo baseline has seen at least one sentence per fact

▶ But: BERT prob. has sentence in training data (trained on
Wikipedia)
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3.5. Results

Results with p@1:

▶ BERT way better than REo for 1-1 relations (eg. capital of )

▶ results N-1 BERT large ≈ results REo

▶ REo unrivaled for N-M relations

▶ general results BERT large ≈ general results REo
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3.5. Results

Conclusion:

▶ could be complicated to improve the performance of RE by
providing additional data

▶ RE performs similar to BERT large in general and doesn’t
need complicated pipelines

▶ LMs could become an useful alternative for traditionally
extracted knowledge bases

▶ in the future: with LLMs that are trained on even more data,
they might be able to replace knowledge bases
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4. SMALL LANGUAGE MODELS
ARE ALSO FEW-SHOT LEARNERS
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4.1 General idea

▶ Paper by Schick and Schütze (LMU) published in June 2021

▶ GPT-3 achieves great results on SuperGLUE tasks by priming
▶ Two problems:

▶ GPT-3 is a LLM and has a large carbon footprint
▶ Examples are limited to a few due to size of the context

window

▶ Solution: Use Pattern-Exploiting Training (PET)

Schick and Schütze 2020
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4.2 Pattern-Exploiting Training (PET)

▶ PET combines the idea of reformulating tasks as cloze
questions with regular gradient-based finetuning

▶ PET additionally requires unlabeled data, unlabeled data is
much easier to obtain than labeled examples for many
real-world applications.

▶ Crucially, PET only works when the answers to be predicted
by the LM correspond to a single token in its vocabulary; this
is a severe limitation as many tasks cannot easily be worded
that way.
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4.3 Pattern-Verbalizer Pairs

Each PVP p = (P, v) consists of:

▶ A pattern P : X → T ∗ maps inputs to cloze questions
containing a single mask. (T*: set of all token sequences)

▶ A verbalizer v : Y → T maps each output to a single token
representing its task-specific meaning in the pattern. (T:
vocabulary)
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4.3 Pattern-Verbalizer Pairs

Application of a PVP p = (P, v) for recognizing textual
entailment:

▶ An input x = (x1, x2) is converted into a cloze question P(x).

▶ qp(y |x) for each y is derived from the probability of v(y)
being a plausible choice for the masked position.
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iPET: Iterative variant of PET for improved learning through
iterations

Process:

▶ Initial Training: Train an ensemble of MLMs using PET
▶ Generate New Training Set: For each model Mi :

▶ Select a random subset of other models
▶ Generate a new training set Ti

▶ Assign labels to unlabeled examples based on the subset’s
most confident predictions

▶ Retrain Models: Retrain each Mi on Ti

▶ Iterate: Repeat the process, increasing the size of Ti by a
constant factor in each iteration

Benefits:

▶ Enhanced Learning: Models learn from different patterns and
data points

▶ Progressive Improvement: Gradual increase in training data
size leads to better model performance
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4.4 GLUE and SuperGLUE

GLUE

▶ Multi-task benchmark platform for Natural Language
Understanding (NLU) tasks

▶ Consists of 9 tasks
▶ CoLa: Corpus of Linguistic Acceptability
▶ QQP: Quora Question Pairs

▶ Performance of LM’s surpassed level of non-expert humans
quickly

Wang et al. (2019b)
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4.4 GLUE and SuperGLUE

GLUE Leaderboard
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4.4 GLUE and SuperGLUE

SuperGLUE

▶ New and improved benchmark with more difficult and more
diverse tasks, total of 8

▶ Retained the two hardest tasks of GLUE: Winograd Schema
Challenge and Recognizing Textual Entailment

▶ New tasks include CommitmentBank, Words in Context and
Reading Comprehension with Commonsense Reasoning

Wang et al. (2019a)
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4.4 GLUE and SuperGLUE
SuperGLUE Leaderboard
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4.4 GLUE and SuperGLUE

Exercise 3, see Colab
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4.5 Results

▶ Better than Chat GPT-3 on most of the tasks, but not SOTA
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4.6 Analysis of the results

What can influence the performance?
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4.6 Analysis of the Results

What can influence the performance?

▶ Patterns/Templates

▶ Labeled and unlabeled data usage

▶ Model type

▶ Training examples
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5. SUMMARY
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Summary

▶ Very intuitively and easy to understand

▶ Performance can vary greatly depending on multiple factors

▶ But: It can be very time and cost intensive.

▶ Solution: Automated Template Learning (next week :))
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Questions and Discussion
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Thank You for Your
attention!
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