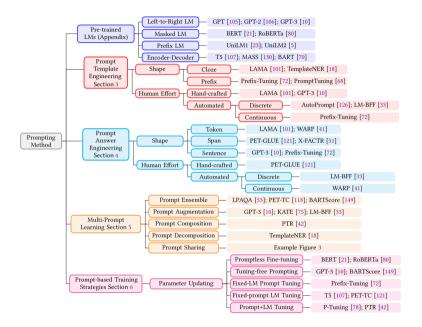


In-Context-Learning HS In Context Learning (ICL) (Summer term 2024)

Nils Reiter, nils.reiter@uni-koeln.de

May 16, 2024



Pengfei Liu/Weizhe Yuan/Jinlan Fu/Zhengbao Jiang/Hiroaki Hayashi/Graham Neubig (2023). "Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing". In: *ACM Comput. Surv.* 55.9. Place: New York, NY, USA Publisher: Association for Computing Machinery. ISSN: 0360-0300. DOI: 10.1145/3560815. URL: https://doi.org/10.1145/3560815

- A First upload on arxiv: July 28, 2021 🚥
- First impressions on the text?

Structure

- Two Sea Changes in Natural Language Processing
- A Formal Description of Prompting
- Prompt Template Engineering
- Prompt Answer Engineering
- Multi-prompt Learning
- Training Strategies for Prompting Methods
- Applications
- Prompt-relevant Topics
- Challenges

A Formal Description of Prompting

Supervised learning: P_θ(y|x) (predict output y based on input x and parameters θ)
 Prompting: Use P_θ(x) to 'derive' y

A Formal Description of Prompting

- Supervised learning: $P_{\theta}(y|x)$ (predict output y based on input x and parameters θ)
- ▶ Prompting: Use $P_{\theta}(x)$ to 'derive' y
- Three steps
 - Prompt addition: Combine input text x with something to get x' (e.g., apply template)
 - Answer search: Test various possible answers z on x', select the one with highest probability
 - Answer mapping: Map most probable answer z to output y
 - Sometimes trivial

A Formal Description of Prompting

- Supervised learning: $P_{\theta}(y|x)$ (predict output y based on input x and parameters θ)
- ▶ Prompting: Use $P_{\theta}(x)$ to 'derive' y
- Three steps
 - Prompt addition: Combine input text x with something to get x' (e.g., apply template)
 - Answer search: Test various possible answers z on x', select the one with highest probability
 - Answer mapping: Map most probable answer z to output y
 - Sometimes trivial
- ▶ I.e.: What the model really 'knows' is $P_{\theta}(x)$

Sentiment Analysis (Liu et al., 2023, 3 f.)

- Task definition
 - ▶ Input: text $x \in X$, e.g., x = "I love this movie."
 - Output: $\mathcal{Y} = \{--, -, \cdots, +, ++\}$

Sentiment Analysis (Liu et al., 2023, 3 f.)

- Task definition
 - ▶ Input: text $x \in X$, e.g., x = "I love this movie."
 - Output: $\mathcal{Y} = \{--, -, \cdots, +, ++\}$

Steps

- ▶ Define template as prompting function $f_{\text{prompt}}(\cdot)$: [X] Overall, it was a [Z] movie.
- Prompt addition: Apply fprompt
 - $x^\prime = {
 m I}$ love this movie. Overall, it was a [Z] movie.

Sentiment Analysis (Liu et al., 2023, 3 f.)

- Task definition
 - ▶ Input: text $x \in X$, e.g., x = "I love this movie."
 - Output: $\mathcal{Y} = \{--, -, \sim, +, ++\}$

Steps

- ▶ Define template as prompting function $f_{\text{prompt}}(\cdot)$: [X] Overall, it was a [Z] movie.
- Prompt addition: Apply fprompt
 - $x^\prime={\rm I}$ love this movie. Overall, it was a [Z] movie.
- Answer search: Identify highest ranking \hat{z} to fill into [z]
 - $\mathcal{Z} = \{$ excellent, good, OK, bad, horrible $\}$: Permissible values for z
 - $f_{\text{fill}}(x', z)$: Function that fills [Z] in x' with z

$$\hat{z} = \operatorname{search}_{z \in \mathcal{Z}} P_{\theta}(f_{\mathsf{fill}}(x', z))$$

E.g.:
$$\hat{z} = \texttt{excellent}$$

Sentiment Analysis (Liu et al., 2023, 3 f.)

- Task definition
 - ▶ Input: text $x \in X$, e.g., x = "I love this movie."
 - Output: $\mathcal{Y} = \{--, -, \sim, +, ++\}$

Steps

- ▶ Define template as prompting function $f_{\text{prompt}}(\cdot)$: [X] Overall, it was a [Z] movie.
- Prompt addition: Apply fprompt
 - $x^\prime={\rm I}$ love this movie. Overall, it was a [Z] movie.
- Answer search: Identify highest ranking \hat{z} to fill into [z]
 - $\mathcal{Z} = \{$ excellent, good, OK, bad, horrible $\}$: Permissible values for z
 - $f_{\text{fill}}(x', z)$: Function that fills [Z] in x' with z

$$\hat{z} = \operatorname{search}_{z \in \mathcal{Z}} P_{\theta}(f_{\mathsf{fill}}(x', z))$$

- ▶ E.g.: $\hat{z} = \texttt{excellent}$
- Answer mapping: Map text output to class
 - \blacktriangleright excellent $\rightarrow ++$

Name Notation		Example	Description	
Input Output	x y	I love this movie. ++ (very positive)	One or multiple texts Output label or text	
Prompting Function	$f_{\rm prompt}(\boldsymbol{x})$	[X] Overall, it was a [Z] movie.	A function that converts the input into a specific form by inserting the input x and adding a slot [Z] where answer z may be filled later.	
Prompt Answer	x' z	I love this movie. Overall, it was a [Z] movie. "good," "fantastic," "boring"	A text where [X] is instantiated by input x but answer slot [Z] is not. A token, phrase, or sentence that fills [Z]	
Filled Prompt	$f_{\rm fill}({\boldsymbol x}', {\boldsymbol z})$	I love this movie. Overall, it was a bad movie.	A prompt where slot [Z] is filled with any answer.	
Answered Prompt	$f_{\rm fill}(\boldsymbol{x'}, \boldsymbol{z^*})$	I love this movie. Overall, it was a good movie.	A prompt where slot [Z] is filled with a true answer.	

 \boldsymbol{z}^* represents answers that correspond to true output \boldsymbol{y}^* .

Table: Terminology and Notation of Prompting Methods (Liu et al., 2023, 5)

Туре	Task Example	Input ([X])	Template	Answer ([Z])
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
Text Classification	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span Classification	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair Classification	Natural Language Inference	[X1]: An old man with [X2]: A man walks	[X1]? [Z], [X2]	Yes No
Tagging	Named Entity Recognition	[X1]: Mike went to Paris. [X2]: Paris	[X1][X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
text Generation	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.
Regression	Textual Similarity	[X1]: A man is smoking. [X2]: A man is skating.	[X1] [Z], [X2]	Yes No

Table: Examples of input, template, and answer for Different Tasks (Liu et al., 2023, 5)

Reiter

ICL: Overview