

Recap and Consequences HS In Context Learning (ICL) (Summer term 2024)

Nils Reiter, nils.reiter@uni-koeln.de

July 11, 2024

IDH Summer Party 2024

Do. 11.07., 19 Uhr Uniwiese, zwischen Mensa und IDH

"Digital art of a group of students having a barbecue and enjoying life"

Section 1

Recap

What Happened So Far

- ▶ 16.05. ICL Overview
- ▶ 06.06. Manual Template Engineering
- ▶ 13.06. Automated Template Engineering
- ▶ 20.06. Answer Space Design Methods
- 27.06. Prompt Ensembling
- ▶ 04.07. Prompt Augmentation

What Happened So Far

- ▶ 16.05. ICL Overview
- ▶ 06.06. Manual Template Engineering
- ▶ 13.06. Automated Template Engineering
- ▶ 20.06. Answer Space Design Methods
- 27.06. Prompt Ensembling
- ▶ 04.07. Prompt Augmentation
- A developing field
 - No clear nomenclature
 - Liu et al. (2023): One attempt to structure things (and a good one, I think)
 - Experiments rarely focus on a single aspect
 - Experimental setup difficult to control

Prompting Scenarios

Interactive in a chat bot: Manual prompt engineering

- Direct use and implicit validation
- Results don't have to be perfect to be useful
- Users make connections and fill holes
- Strategies involve different components (e.g., examples)

Prompting Scenarios

Interactive in a chat bot: Manual prompt engineering

- Direct use and implicit validation
- Results don't have to be perfect to be useful
- Users make connections and fill holes
- Strategies involve different components (e.g., examples)
- 'Batch use' for automatic classification (i.e., use LLM-prompting to analyse large quantities of data)
 - Builds on top of traditional ML applications and assumptions
 - No immediate validation during application, therefore evaluation on test set
 - Subsequent applications rely on measured correctness

Prompting Scenarios

Interactive in a chat bot: Manual prompt engineering

- Direct use and implicit validation
- Results don't have to be perfect to be useful
- Users make connections and fill holes
- Strategies involve different components (e.g., examples)
- 'Batch use' for automatic classification (i.e., use LLM-prompting to analyse large quantities of data)
 - Builds on top of traditional ML applications and assumptions
 - No immediate validation during application, therefore evaluation on test set
 - Subsequent applications rely on measured correctness
- LLM-prompting likely well suited for "human-in-the-loop" approaches
- But interactively developed prompts likely do not generalize well

Prompting Steps

- > Prompt template: t = [X] Overall, it was a [Z] movie.
 - Template engineering: Choose among alternative formulations (e.g., [X] The movie was [Z].)
 - Prompt augmentation: Add additional contexts to the prompt (e.g., [X1] The movie was [Z1]. [X2] The movie was [Z2]. [X] the movie was [Z].)

Prompting Steps

- > Prompt template: t = [X] Overall, it was a [Z] movie.
 - Template engineering: Choose among alternative formulations (e.g., [X] The movie was [Z].)
 - Prompt augmentation: Add additional contexts to the prompt (e.g., [X1] The movie was [Z1]. [X2] The movie was [Z2]. [X] the movie was [Z].)
- Three steps
 - Apply template f(x, t) = I love this movie. Overall, it was a [Z] movie.
 - Answer search: Select the best z to fill in the template
 - Answer space design: Define potential answers
 - ADifferent options
 - Answer mapping: Map most probable answer z to output y
 - Answer space design: ...and how to map them

Prompting Steps

- > Prompt template: t = [X] Overall, it was a [Z] movie.
 - Template engineering: Choose among alternative formulations (e.g., [X] The movie was [Z].)
 - Prompt augmentation: Add additional contexts to the prompt (e.g., [X1] The movie was [Z1]. [X2] The movie was [Z2]. [X] the movie was [Z].)
- Three steps
 - Apply template f(x, t) = I love this movie. Overall, it was a [Z] movie.
 - Answer search: Select the best z to fill in the template
 - Answer space design: Define potential answers
 - ADifferent options
 - Answer mapping: Map most probable answer z to output y
 - Answer space design: ...and how to map them
- Prompt ensembling
 - Do everything with multiple prompts
 - Options to combine their answers (e.g., majority vote)

ICL: Recap

Getting LLM Answers

Two options

1 Let the model generate something, map it onto the target label (answer mapping)

- Sometimes difficult to restrict output to defined vocabulary, need to interpret model output (which is yet another NLP task)
- E.g., asking the model to only produce a single token

Getting LLM Answers

Two options

1 Let the model generate something, map it onto the target label (answer mapping)

- Sometimes difficult to restrict output to defined vocabulary, need to interpret model output (which is yet another NLP task)
- E.g., asking the model to only produce a single token
- 2 Ask the model for the label with the highest probability
 - Easier task
 - Labels are pre-defined, but best label may not be what the model would have produced

Getting LLM Answers

Two options

1 Let the model generate something, map it onto the target label (answer mapping)

- Sometimes difficult to restrict output to defined vocabulary, need to interpret model output (which is yet another NLP task)
- E.g., asking the model to only produce a single token
- 2 Ask the model for the label with the highest probability
 - Easier task
 - Labels are pre-defined, but best label may not be what the model would have produced
- Often underspecified in research literature!
- Huggingface blog post: huggingface.co

Section 2

Consequences

Consequences

Discussion Groups

- How does prompting (as a machine learning paradigm) in interactive and batch use change the way things are done (in your opinion and according to what we know now)
 - in natural language processing
 - in the humanities
 - in academia in general
 - in industry (IT/other)
 - ▶ in the (German/Western) society
- What will remain the same after all?
- Which new possibilities are opened up? Which activity/method goes away?
- What will become easier, what will become harder?
- What do we need to find out next?

Consequences

Discussion Groups

- How does prompting (as a machine learning paradigm) in interactive and batch use change the way things are done (in your opinion and according to what we know now)
 - in natural language processing
 - in the humanities
 - in academia in general
 - in industry (IT/other)
 - ▶ in the (German/Western) society
- What will remain the same after all?
- Which new possibilities are opened up? Which activity/method goes away?
- What will become easier, what will become harder?
- What do we need to find out next?

Procedure

- Split up into groups of 3-4 people
- \blacktriangleright Discuss for about 30 minutes, take notes in Google Slides \longrightarrow
- Present in plenary session

Reiter

