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Automated Template Engineering

Answer Space Design Methods
Prompt Ensembling

Prompt Augmentation

A developing field

» No clear nomenclature

Liu et al. (2023): One attempt to structure things (and a good one, | think)

>
» Experiments rarely focus on a single aspect
» Experimental setup difficult to control
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Recap

Prompting Scenarios

» Interactive in a chat bot: 4*Manual prompt engineering
» Direct use and implicit validation
» Results don’t have to be perfect to be useful
» Users make connections and fill holes
> Strategies involve different components (e.g., examples)
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» Interactive in a chat bot: 4*Manual prompt engineering
» Direct use and implicit validation
» Results don’t have to be perfect to be useful
» Users make connections and fill holes
> Strategies involve different components (e.g., examples)
> ‘Batch use' for automatic classification
(i.e., use LLM-prompting to analyse large quantities of data)

» Builds on top of traditional ML applications and assumptions
» No immediate validation during application, therefore evaluation on test set
> Subsequent applications rely on measured correctness

» LLM-prompting likely well suited for “human-in-the-loop” approaches

P> But interactively developed prompts likely do not generalize well
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Prompting Steps

» Prompt template: ¢ = [X] Overall, it was a [Z] movie.
> ATemplate engineering: Choose among alternative formulations (e.g.,
[X] The movie was [Z] )
> APrompt augmentation: Add additional contexts to the prompt (e.g.,
[X1] The movie was [Z1]. [X2] The movie was [Z2]. [X] the movie was [Z] )
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[X] The movie was [Z] )
> APrompt augmentation: Add additional contexts to the prompt (e.g.,
[X1] The movie was [Z1]. [X2] The movie was [Z2]. [X] the movie was [Z] )
» Three steps
> Apply template f(a:, t) =1 love this movie. Overall, it was a [Z] movie.
» Answer search: Select the best z to fill in the template

> AAnswer space design: Define potential answers
> ADifferent options ¥

» Answer mapping: Map most probable answer z to output y
> A Answer space design: ..and how to map them
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» Prompt template: ¢ = [X] Overall, it was a [Z] movie.
> ATemplate engineering: Choose among alternative formulations (e.g.,
[X] The movie was [Z] )
> APrompt augmentation: Add additional contexts to the prompt (e.g.,
[X1] The movie was [Z1]. [X2] The movie was [Z2]. [X] the movie was [Z] )
» Three steps

> Apply template f(a:, t) =1 love this movie. Overall, it was a [Z] movie.
» Answer search: Select the best z to fill in the template

> A Answer space design: Define potential answers
> ADifferent options ¥

» Answer mapping: Map most probable answer z to output y
> A Answer space design: ..and how to map them
» APrompt ensembling

» Do everything with multiple prompts
> Options to combine their answers (e.g., majority vote)
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Getting LLM Answers

» Two options
@ Let the model generate something, map it onto the target label (answer mapping)

> Sometimes difficult to restrict output to defined vocabulary, need to interpret model output
(which is yet another NLP task)
» E.g., asking the model to only produce a single token
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Q Ask the model for the label with the highest probability
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Getting LLM Answers

» Two options
@ Let the model generate something, map it onto the target label (answer mapping)

> Sometimes difficult to restrict output to defined vocabulary, need to interpret model output
(which is yet another NLP task)
» E.g., asking the model to only produce a single token

Q Ask the model for the label with the highest probability

> Easier task
> Labels are pre-defined, but best label may not be what the model would have produced

» Often underspecified in research literature!

» Huggingface blog post:
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Consequences

Discussion Groups
» How does prompting (as a machine learning paradigm) in interactive and batch use
change the way things are done (in your opinion and according to what we know now)

» in natural language processing
» in the humanities
» in academia in general
» in industry (IT /other)
» in the (German/Western) society

» What will remain the same after all?

» Which new possibilities are opened up? Which activity/method goes away?

> What will become easier, what will become harder?

» What do we need to find out next?
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Consequences

Discussion Groups

» How does prompting (as a machine learning paradigm) in interactive and batch use
change the way things are done (in your opinion and according to what we know now)
» in natural language processing
» in the humanities
» in academia in general
» in industry (IT /other)
» in the (German/Western) society

» What will remain the same after all?

» Which new possibilities are opened up? Which activity/method goes away?
» What will become easier, what will become harder?

» What do we need to find out next?

Procedure
» Split up into groups of 3-4 people
» Discuss for about 30 minutes, take notes in Google Slides —

P Present in plenary session
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