
Recap

I Object-Oriented Programming
I Dealing with complexity by structuring your code
I Classes and objects

I Classes
I Unit of code to define some type of object
I Contains fields (= variables, data) and methods (= behaviour)

I Objects
I Concrete individuals of a certain class

Reiter Session 9: Methods and Inheritance 1 / 23



1 public class Horse {
2 // the fields/variables of a class to store data about an instance
3 String color;
4 String name;
5 int currentSpeed;
6
7 // constructor to define what happens when a new object is created
8 public Horse(String name) {
9 this.name = name; // "this" to distinguish field and local variable

10 }
11
12 // methods of the class to define their behaviour
13 public Horse mate(Horse partner) {
14 // two horses meet and make a new horse
15 }
16
17 public static void main(String[] args) {
18 // create an instance of type horse
19 Horse h1 = new Horse("Joe");
20 // create a second instance of type horse
21 Horse h2 = new Horse("Jane");
22 }
23 }

Reiter Session 9: Methods and Inheritance 2 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



demo
Exercise 8



Session 9: Methods and Inheritance
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

December 11, 2024



Packages
(leftover from last week)

I Multiple classes often belong conceptually together
I Packages can be used to group classes (and files)
I Package declaration: package de.nilsreiter.java.bla;

I First statement within a file
I Package hierarchy must reflect directory hierarchy

I Eclipse hides that from us
I Package name conventions

I Lower-cased
I ‘Reversed URLs’ to be globally unique

Reiter Session 9: Methods and Inheritance 5 / 23



Section 1

Methods



Methods

Introduction

Methods and Fields

Staticness Accessibility

Static Non-Static Private Protected Public
static private protected public

Reiter Session 9: Methods and Inheritance 7 / 23

Nils Reiter



Methods

Staticness

Non-static
I Methods can only be used with an object of the class in which they are defined

I E.g., in order to call method mate(Horse) , we need an object of type Horse
I Default behaviour (unmarked methods are non-static)
I Also applies to fields
I E.g.: INSTANCE.METHOD()

Static
I Methods can be used without an object

I E.g., marking a species as endangered is something for the class, not for instances of it
I Java keyword static

I E.g.: CLASS.METHOD()

Reiter Session 9: Methods and Inheritance 8 / 23



Methods

Staticness

Non-static
I Methods can only be used with an object of the class in which they are defined

I E.g., in order to call method mate(Horse) , we need an object of type Horse
I Default behaviour (unmarked methods are non-static)
I Also applies to fields
I E.g.: INSTANCE.METHOD()

Static
I Methods can be used without an object

I E.g., marking a species as endangered is something for the class, not for instances of it
I Java keyword static

I E.g.: CLASS.METHOD()

Reiter Session 9: Methods and Inheritance 8 / 23



1 public class Horse {
2 // the fields/variables of a class to store data about an instance
3 int age;
4
5 // boolean field to store what horses eat
6 static String diet = "herbivore";
7
8 public void birthday() {
9 // it's the horse's birthday

10 age = age + 1;
11 }
12
13 public static boolean isCarnivore() { return diet.equals("carnivore"); }
14 public static boolean isHerbivore() { return diet.equals("herbivore"); }
15
16 public static void main(String[] args) {
17 Horse h1 = new Horse();
18
19 // call a non-static method
20 h1.birthday();
21
22 // call a static method
23 Horse.isHerbivore();
24 }
25 }

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Methods

Accessibility
I Public access – public

I Method/field can be accessed from anywhere
I Protected access – protected

I Method/field can only be accessed from within the same package
I If no access is specified, it’s protected

I Private access – private

I Method/field can only be accessed from within the same class

Why?

I Modularization is important for dealing with complexity
I A complex program consists of many small parts that are not as complex
I Small parts are only maintainable if they have restricted interfaces
I Access restrictions can enfore that

Reiter Session 9: Methods and Inheritance 10 / 23

Nils Reiter

Nils Reiter

Nils Reiter



Methods

Accessibility
I Public access – public

I Method/field can be accessed from anywhere
I Protected access – protected

I Method/field can only be accessed from within the same package
I If no access is specified, it’s protected

I Private access – private

I Method/field can only be accessed from within the same class

Why?

I Modularization is important for dealing with complexity
I A complex program consists of many small parts that are not as complex
I Small parts are only maintainable if they have restricted interfaces
I Access restrictions can enfore that

Reiter Session 9: Methods and Inheritance 10 / 23



demo
Horse with static and private fields/methods



Section 2

Inheritance



Inheritance

Introduction

Inheritance – “Vererbung”
I Important concept in object-oriented programming
I Classes represent kinds of things, because they show similar behaviour

I Not all kinds are totally unique
I Many kinds share certain properties

I E.g. Donkeys move in a similar way as horses do and both are mammals etc.

I Inheritance allows us to model this
I Many domains have hierarchical structures

I E.g., animal species, companies, kitchen equipment

Reiter Session 9: Methods and Inheritance 13 / 23



Inheritance

Introduction

Inheritance – “Vererbung”
I Important concept in object-oriented programming
I Classes represent kinds of things, because they show similar behaviour

I Not all kinds are totally unique
I Many kinds share certain properties

I E.g. Donkeys move in a similar way as horses do and both are mammals etc.
I Inheritance allows us to model this
I Many domains have hierarchical structures

I E.g., animal species, companies, kitchen equipment

Reiter Session 9: Methods and Inheritance 13 / 23



Inheritance

Class Inheritance

I A class inherits from another class
I New keyword: extends , used in the class declaration:

public class Horse extends Animal { ... }

I Horse: sub class
I Animal: super class

Reiter Session 9: Methods and Inheritance 14 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Inheritance

Class Inheritance
Meaning

I No change in accessibility/visibility rules
I private fields/methods still not visible, protected only within the same package etc.

I Objects of sub class can call methods defined in super class
I E.g., the class Animal can define a walk-method for all sub classes

I Objects of the sub class can be assigned to variables of the super class
I Animal someAnimal = new Horse();

I Animal[] zooAnimals = new Animal[2] { new Horse(), new Donkey() };

I Casting from sub class to super class (“upwards”) always works
I Animal someAnimal = (Animal) myHorse;

Reiter Session 9: Methods and Inheritance 15 / 23



Inheritance

Class Inheritance
Meaning

I No change in accessibility/visibility rules
I private fields/methods still not visible, protected only within the same package etc.

I Objects of sub class can call methods defined in super class
I E.g., the class Animal can define a walk-method for all sub classes

I Objects of the sub class can be assigned to variables of the super class
I Animal someAnimal = new Horse();

I Animal[] zooAnimals = new Animal[2] { new Horse(), new Donkey() };

I Casting from sub class to super class (“upwards”) always works
I Animal someAnimal = (Animal) myHorse;

Reiter Session 9: Methods and Inheritance 15 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



demo
Animal and Hippo



Inheritance

Inheritance
Method Overriding

1 class Animal {
2 public void step(int size) { /*...*/ };
3 }
4
5 class Horse extends Animal {
6 }
7
8 class Main {
9 public static void main(String[] args) {

10 Horse h = new Horse();
11 h.step(5);
12 }
13 }

I Objects of the sub class can call
methods defined in super class

Reiter Session 9: Methods and Inheritance 17 / 23



Inheritance

Inheritance
Method Overriding

1 class Animal {
2 public void step(int size) { /*...*/ };
3 }
4
5 class Horse extends Animal {
6 }
7
8 class Main {
9 public static void main(String[] args) {

10 Horse h = new Horse();
11 h.step(5);
12 }
13 }

I Objects of the sub class can call
methods defined in super class

Reiter Session 9: Methods and Inheritance 17 / 23



Inheritance

Inheritance
Method Overriding

1 class Animal {
2 public void step(int size) { /*...*/ };
3 }
4
5 class Horse extends Animal {
6 public void step(int size) { /*...*/ };
7 }
8
9 class Main {

10 public static void main(String[] args) {
11 Horse h = new Horse();
12 h.step(5);
13 }
14 }

I Methods in sub class override
methods in super class

I Calling super method explicitly
I Outside of sub class by casting:

((Animal)h).step(5);

I Inside of sub class with super :
super.step(5);

I Think of super as
((Animal) this) (in this case)

Reiter Session 9: Methods and Inheritance 18 / 23



Inheritance

Inheritance
Method Overriding

1 class Animal {
2 public void step(int size) { /*...*/ };
3 }
4
5 class Horse extends Animal {
6 public void step(int size) { /*...*/ };
7 }
8
9 class Main {

10 public static void main(String[] args) {
11 Horse h = new Horse();
12 h.step(5);
13 }
14 }

I Methods in sub class override
methods in super class

I Calling super method explicitly
I Outside of sub class by casting:

((Animal)h).step(5);

I Inside of sub class with super :
super.step(5);

I Think of super as
((Animal) this) (in this case)

Reiter Session 9: Methods and Inheritance 18 / 23



Inheritance

Variable Type != Object Type
I Each variable has a type

I E.g., int , String , Horse , …
I Each object and value has a type

I E.g., int , String , Horse , …

I If object/value type and variable type match, we can make an assignment
I E.g., int i = 5;

I E.g., Horse h = new Horse();

I It’s a compile error, if they do not match
I E.g., int i = true; �

I E.g., Horse h = new Donkey(); �

I But we can assign a object of a sub class to a variable of a super class
I E.g., Animal a = new Horse(); //if Horse extends Animal

Reiter Session 9: Methods and Inheritance 19 / 23



Inheritance

Variable Type != Object Type
I Each variable has a type

I E.g., int , String , Horse , …
I Each object and value has a type

I E.g., int , String , Horse , …
I If object/value type and variable type match, we can make an assignment

I E.g., int i = 5;

I E.g., Horse h = new Horse();

I It’s a compile error, if they do not match
I E.g., int i = true; �

I E.g., Horse h = new Donkey(); �

I But we can assign a object of a sub class to a variable of a super class
I E.g., Animal a = new Horse(); //if Horse extends Animal

Reiter Session 9: Methods and Inheritance 19 / 23



Inheritance

Variable Type != Object Type
I Each variable has a type

I E.g., int , String , Horse , …
I Each object and value has a type

I E.g., int , String , Horse , …
I If object/value type and variable type match, we can make an assignment

I E.g., int i = 5;

I E.g., Horse h = new Horse();

I It’s a compile error, if they do not match
I E.g., int i = true; �

I E.g., Horse h = new Donkey(); �

I But we can assign a object of a sub class to a variable of a super class
I E.g., Animal a = new Horse(); //if Horse extends Animal

Reiter Session 9: Methods and Inheritance 19 / 23



Inheritance

Variable Type != Object Type
I Each variable has a type

I E.g., int , String , Horse , …
I Each object and value has a type

I E.g., int , String , Horse , …
I If object/value type and variable type match, we can make an assignment

I E.g., int i = 5;

I E.g., Horse h = new Horse();

I It’s a compile error, if they do not match
I E.g., int i = true; �

I E.g., Horse h = new Donkey(); �

I But we can assign a object of a sub class to a variable of a super class
I E.g., Animal a = new Horse(); //if Horse extends Animal

Reiter Session 9: Methods and Inheritance 19 / 23



Inheritance

java.lang.Object

I All classes inherit automatically from java.lang.Object

I I.e., every object is in an instance of java.lang.Object (though maybe indirectly)
I Class provides a few methods Javadoc

I Object clone()

I boolean equals(Object obj)

I int hashCode()

I String toString()

I void wait() , void wait(long timeout) , void wait(long timeout, int nanos)

I void notify() , void notifyAll()

I void finalize()

I Class<?> getClass()

Reiter Session 9: Methods and Inheritance 20 / 23

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html


Inheritance

Testing Inheritance

I New operator: isinstance

1 Horse h = new Horse();
2
3 h instanceof Horse; // true
4 h instanceof Object; // true
5 h instanceof String; // false
6 h instanceof Animal; // true if Horse extends Animal

Reiter Session 9: Methods and Inheritance 21 / 23



Inheritance

Remarks on Inheritance

I Why inheritance?
I Model commonalities in our domain
I The same behaviour can be implement as high as possible in the hierarchy, and only once
I Again, reducing complexity

I Multiple inheritance: Can a class inherit from multiple classes?
I In Java: No

I Because method calls then become ambiguous
I In C++/Python: Yes!

I C++: Programmer has to resolve ambiguity with additional syntax
I Python: Depends on the order in which inheritance has been specified

Reiter Session 9: Methods and Inheritance 22 / 23



Inheritance

Remarks on Inheritance

I Why inheritance?
I Model commonalities in our domain
I The same behaviour can be implement as high as possible in the hierarchy, and only once
I Again, reducing complexity

I Multiple inheritance: Can a class inherit from multiple classes?
I In Java: No

I Because method calls then become ambiguous

I In C++/Python: Yes!
I C++: Programmer has to resolve ambiguity with additional syntax
I Python: Depends on the order in which inheritance has been specified

Reiter Session 9: Methods and Inheritance 22 / 23



Inheritance

Remarks on Inheritance

I Why inheritance?
I Model commonalities in our domain
I The same behaviour can be implement as high as possible in the hierarchy, and only once
I Again, reducing complexity

I Multiple inheritance: Can a class inherit from multiple classes?
I In Java: No

I Because method calls then become ambiguous
I In C++/Python: Yes!

I C++: Programmer has to resolve ambiguity with additional syntax
I Python: Depends on the order in which inheritance has been specified

Reiter Session 9: Methods and Inheritance 22 / 23



demo
Exercise


	Methods
	Inheritance

