Recap: |0 and Exceptions

» Input and output
P Streams: Pipes through which data flows

» When something has consumed, it’s no longer there
> Need to be flushed and closed at the end

> InputStream/OutputStream: byte-wise operations
> Readers/Writers: Used on top of streams to operate on characters
» Things can go wrong, even if our program works well

> Many error sources with 1/O: Files, disks, networks can fail
» Exception handling

» Mechanism to handle unexpected errors
> try {} catch (EX) {}

» Exceptions are objects of class java.lang.Exception

a file “file.txt”

ab

a file “file.txt”

97 98

a file “file.txt”

0110000101100010

a file “file.txt”

0110000101100010

FileInputStream fis =
new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);

5 i = fis.read();

O N1 9000 A

oLms e LA
a file “file.txt” ()‘(1’ 20¢+4 = ﬁ}
0110000101100010 ‘
T
C FileInputStream fis =
! new FileInputStream("file.txt");

P 2 int i = fis.read();
o

| = 3 while (i >= 0) {

fis | 4 System.out.println((char) i);
o

5 i = fis.read();

Nils Reiter

Nils Reiter

Nils Reiter

a file “file.txt”

0110000101100010

fis

97 (int)

FileInputStream fis =
new FileInputStream("file.txt");
int i = fis.read();

while (i >= 0) {
System.out.println((char) i);

i = fis.read();

a file “file.txt”

0110000101100010

FileInputStream fis =
! new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);
5 i = fis.read();

97] v

a file “file.txt”

0110000101100010

FileInputStream fis =
! new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);
5 i = fis.read();

97] v

a file “file.txt”

0110000101100010

FileInputStream fis =
! new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);
5 i = fis.read();

Lo7] 2] ”

System.out

a file “file.txt”

0110000101100010

FileInputStream fis =
! new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);
5 i = fis.read();

97] v

System.out a

a file “file.txt”

0110000101100010
C FileInputStream fis =
! new FileInputStream("file.txt");
S 2 int i = fis.read();
o
| 8 3 while (i >= 0) {
fis | 4 System.out.println((char) i);
o
5 i = fis.read();
6 1}
f

System.out

Nils Reiter

a file “file.txt”

0110000101100010

fis

System.out

FileInputStream fis =
new FileInputStream("file.txt");
int i = fis.read();

while (i >= 0) {
System.out.println((char) i);

i = fis.read();

a file “file.txt”

0110000101100010

FileInputStream fis =
! new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);
5 i = fis.read();
(98]

98] v

System.out

Nils Reiter

a file “file.txt”

0110000101100010

FileInputStream fis =
! new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);
5 i = fis.read();
98]

98] v

System.out

a file “file.txt”

0110000101100010

FileInputStream fis =
! new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);
5 i = fis.read();
98]

98] [b] ”

System.out

a file “file.txt”

0110000101100010

FileInputStream fis =
! new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);
5 i = fis.read();
98]

98] v

TR
System.out b

a file “file.txt”

0110000101100010 ‘

C FileInputStream fis =
new FileInputStream("file.txt");
2 int i = fis.read();

;*4 3 while (i >= 0) {
fis 4 System.out.println((char) i);

5 i = fis.read();

System.out

Nils Reiter

a file “file.txt”

w

0110000101100010 0

(

System.out

FileInputStream fis =
new FileInputStream("file.txt");
int i = fis.read();

while (i >= 0) {
System.out.println((char) i);

= fis.read();

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

a file “file.txt”

w2
0110000101100010 S

FileInputStream fis =
! new FileInputStream("file.txt");
2 int i = fis.read();
3 while (i >= 0) {
fis 4 System.out.println((char) i);
5 i = fis.read();

1] o

System.out

Nils Reiter

Nils Reiter

@?“ UNIVERSITAT
) ZU KOLN

User Input, Java Standard Library, Code Style, Closing Remarks

Softwaretechnologie: Java |

Nils Reiter
nils.reiter@uni-koeln.de

January 22, 2025

INSTITUT FUR
DIGITAL HUMANITIES
UNIVERSITAT ZU KOLN

Section 1

User Input

User Input

Introduction

P Last week: “Using system.out.println() uses a stream”

» Now: How does this work, exactly?

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 5/19

User Input

Introduction

P Last week: “Using system.out.println() uses a stream”
» Now: How does this work, exactly?

» Two directions

» Program output written to console
» Program input read from console

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 5/19

User Input

System.out.println

> system: A class with many static methods / fields

> l.e., we can just use them: System.exit() calls static method exit in class System

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 6/19

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

User Input

System.out.println

> system: A class with many static methods / fields

> l.e., we can just use them: System.exit() calls static method exit in class System

» Three stream-related fields:
P> System.out — a PrintStream

» System.err — a PrintStream

P> System.in — an InputStream

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 6/19

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

User Input

PrintStream

>

» Inherits from java.io.FilterOutputStream , Which inherits from 'java.io.OutputStream

> l.e., System.out is an output stream, and we can call all OutputStream methods (e.g.,
write(int byte))

» Class documentation:

» Ability to print representations of various data values conveniently
» PrintStream never throws an IOException; instead
» PrintStream can be created so as to flush automatically

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 7/19

https://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html

User Input

PrintStream

>

» Inherits from java.io.FilterOutputStream , Which inherits from 'java.io.OutputStream

> l.e., System.out is an output stream, and we can call all OutputStream methods (e.g.,
write(int byte))

» Class documentation:

» Ability to print representations of various data values conveniently
» PrintStream never throws an IOException; instead
» PrintStream can be created so as to flush automatically

» System.out and System.err

> System.out used for regular output (e.g., the answer that the program produces)
> System.err intended for error messages (e.g., exception stuff)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 7/19

https://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html

User Input

System.in

» Used to read input from console

> Not very convenient with the bare input stream

» Two options:
» InputStreamReader

» Reads character-wise
> Beware: \n is a single character

> BufferedStreamBpdeter (wrapped around an InputStreamReader)
> Ca/rgread line-wise (which is usually what we want)

\mw&

Reiter User Input, Java Standard Library, Code Style, Closing Remarks

8/19

Nils Reiter

Nils Reiter

demo

Zoo/Exercise 13

Section 2

Java Standard Library

Java Standard Library

Introduction

» Programming language core: Rather small

> A few types, some statements, some syntactic elements

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 11/19

Java Standard Library

Introduction

» Programming language core: Rather small

> A few types, some statements, some syntactic elements
P Libraries

» Collections of code, useful for all kinds of things
» Many languages have such libraries
» To avoid reinventing the wheel, we should use them

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 11/19

Java Standard Library

Java Standard Library

Interesting packages

>

vvyyvyyVvyy

v

java.
java.
java.
java.

java.

java.

>

java.

io — Input and output

1ang — Core functions

math — Mathematical functions

net — Handling networks and connections

text — Simple text processing
util — Various utility functions, in particular collections
Will be discussed in depth in the summer term

awt, javax.swing — Classes for graphical user interfaces

Reiter User Input, Java Standard Library, Code Style, Closing Remarks

12/19

Section 3

Code Style

Code Style

Introduction

v

Interaction between programmers is easier, if they adhere to common style
Style: How to write and format variables, methods, classes etc.

Java Code Style
» No strict rules, but guidelines

Offical document from 1997:
https://www.oracle.com/technetwork/java/codeconventions-150003. pdf

In Eclipse, you can select the code and use Source > Format to automatically format the
code nicely

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 14 /19

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf

Code Style

Java Code Style

vV VvVvVvYVvYy

vy

camelCase is used for combining words (instead of underscore or dot)
Class and interface names start with an upper case letter (Myarray) and are nouns

Methods names start with a lower case letter (get()) and are verb phrases

Variables start with a lower-case letter and are as long as it needs to be for clarity
» Variable names like a are dispreferred

Indentation should be used to make the structure of the program visible

» Substatements of a statement or declaration should be indented
» Indentation should be four spaces wide

Avoid lines longer than 80 characters

Files longer than 2000 lines are cumbersome and should be avoided.

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 15/19

Section 4

Closing Remarks

Closing Remarks

Learning Programming

P Learning to program is hard and takes time
» It helps to
> Regularly do it
Talk about it
Be stubborn
Think formalistic
Be fearless and disrespectful
Read documentation
» Try to understand your mistakes

vyvvyyVvyy

> It's ok to make mistakes

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 17/19

Closing Remarks

On Programming in Real Life

P It's extremely rare to start from scratch
> Most of the time, we work with code that others have written

» 60 % to 90 % of the lifetime cost of software goes to maintenance
> Software we start will likely be continued by others

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18/19

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm

Closing Remarks

On Programming in Real Life

P It's extremely rare to start from scratch
> Most of the time, we work with code that others have written
» 60 % to 90 % of the lifetime cost of software goes to maintenance

> Software we start will likely be continued by others

< Writing “good code” is not needed technically, but because it makes maintenance easier

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18/19

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm

Closing Remarks

On Programming in Real Life

P It's extremely rare to start from scratch
> Most of the time, we work with code that others have written
» 60 % to 90 % of the lifetime cost of software goes to maintenance

> Software we start will likely be continued by others

< Writing “good code” is not needed technically, but because it makes maintenance easier

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you're as clever as you can be when you write it, how will you ever debug it?

Kernighan /Plauger (1978, 10)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18/19

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm

Closing Remarks

Looking Ahead

What happens in the summer term
» Version control (= git)
> Recursion
» Data structures
» Unit testing
» Efficient programming
» Multithreading
>

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 19/19

Closing Remarks

Looking Ahead

What happens in the summer term
» Version control (= git)

> Recursion

» Data structures

» Unit testing

» Efficient programming

» Multithreading

> .

Programming ldeas for the Break

» A simple game such as Tic Tac Toe
» Turn-based games are simpler than real time games

» Birthday predictor (read in a list of birthdays, calculate the next round anniversaries)
» Make algorithmic art (e.g., ASCII art)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 19/19

	User Input
	Java Standard Library
	Code Style
	Closing Remarks

