
Recap: IO and Exceptions

I Input and output
I Streams: Pipes through which data flows

I When something has consumed, it’s no longer there
I Need to be flushed and closed at the end

I InputStream/OutputStream: byte-wise operations
I Readers/Writers: Used on top of streams to operate on characters

I Things can go wrong, even if our program works well
I Many error sources with I/O: Files, disks, networks can fail
I Exception handling

I Mechanism to handle unexpected errors
I try {} catch (EX) {}

I Exceptions are objects of class java.lang.Exception

ab
a file “file.txt”

97 98
a file “file.txt”

0110000101100010
a file “file.txt”

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

01
10

00
01

Nils Reiter

Nils Reiter

Nils Reiter

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis 97
(in

t)

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

97i

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

97i

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

97i ’a’

System.out

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

97i

System.out ’a’

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

97i

System.out

01
10

00
10

Nils Reiter

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

97i

System.out

98
(in

t)

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

System.out

98i

Nils Reiter

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

System.out

98i

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

System.out

98i ’b’

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

System.out

98i

’b’

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

System.out

98i

Nils Reiter

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

System.out

-1i

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

0110000101100010
a file “file.txt”

FileInputStream fis =
new FileInputStream("file.txt");1

int i = fis.read();2

while (i >= 0) {3

System.out.println((char) i);4

i = fis.read();5

}6

fis

System.out

-1i

Nils Reiter

Nils Reiter

User Input, Java Standard Library, Code Style, Closing Remarks
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

January 22, 2025

Section 1

User Input

User Input

Introduction

I Last week: “Using System.out.println() uses a stream”
I Now: How does this work, exactly?

I Two directions
I Program output written to console
I Program input read from console

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 5 / 19

User Input

Introduction

I Last week: “Using System.out.println() uses a stream”
I Now: How does this work, exactly?
I Two directions

I Program output written to console
I Program input read from console

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 5 / 19

User Input

System.out.println

I System : A class with many static methods / fields java.lang.System

I I.e., we can just use them: System.exit() calls static method exit in class System

I Three stream-related fields:
I System.out – a PrintStream
I System.err – a PrintStream
I System.in – an InputStream

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 6 / 19

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

User Input

System.out.println

I System : A class with many static methods / fields java.lang.System

I I.e., we can just use them: System.exit() calls static method exit in class System
I Three stream-related fields:

I System.out – a PrintStream
I System.err – a PrintStream
I System.in – an InputStream

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 6 / 19

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html

User Input

PrintStream

I java.io.PrintStream

I Inherits from java.io.FilterOutputStream , which inherits from java.io.OutputStream

I I.e., System.out is an output stream, and we can call all OutputStream methods (e.g.,
write(int byte))

I Class documentation:
I Ability to print representations of various data values conveniently
I PrintStream never throws an IOException; instead
I PrintStream can be created so as to flush automatically

I System.out and System.err
I System.out used for regular output (e.g., the answer that the program produces)
I System.err intended for error messages (e.g., exception stuff)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 7 / 19

https://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html

User Input

PrintStream

I java.io.PrintStream

I Inherits from java.io.FilterOutputStream , which inherits from java.io.OutputStream

I I.e., System.out is an output stream, and we can call all OutputStream methods (e.g.,
write(int byte))

I Class documentation:
I Ability to print representations of various data values conveniently
I PrintStream never throws an IOException; instead
I PrintStream can be created so as to flush automatically

I System.out and System.err
I System.out used for regular output (e.g., the answer that the program produces)
I System.err intended for error messages (e.g., exception stuff)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 7 / 19

https://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html

User Input

System.in

I Used to read input from console
I Not very convenient with the bare input stream
I Two options:

I InputStreamReader
I Reads character-wise
I Beware: n is a single character

I BufferedStreamReader (wrapped around an InputStreamReader)
I Can read line-wise (which is usually what we want)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 8 / 19

Nils Reiter

Nils Reiter

demo
Zoo/Exercise 13

Section 2

Java Standard Library

Java Standard Library

Introduction

I Programming language core: Rather small
I A few types, some statements, some syntactic elements

I Libraries
I Collections of code, useful for all kinds of things
I Many languages have such libraries
I To avoid reinventing the wheel, we should use them

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 11 / 19

Java Standard Library

Introduction

I Programming language core: Rather small
I A few types, some statements, some syntactic elements
I Libraries

I Collections of code, useful for all kinds of things
I Many languages have such libraries
I To avoid reinventing the wheel, we should use them

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 11 / 19

Java Standard Library

Java Standard Library

Interesting packages
I java.io – Input and output
I java.lang – Core functions
I java.math – Mathematical functions
I java.net – Handling networks and connections
I java.text – Simple text processing
I java.util – Various utility functions, in particular collections

I Will be discussed in depth in the summer term
I java.awt, javax.swing – Classes for graphical user interfaces

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 12 / 19

Section 3

Code Style

Code Style

Introduction

I Interaction between programmers is easier, if they adhere to common style
I Style: How to write and format variables, methods, classes etc.
I Java Code Style

I No strict rules, but guidelines
I Offical document from 1997:

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf
I In Eclipse, you can select the code and use Source > Format to automatically format the

code nicely

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 14 / 19

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf

Code Style

Java Code Style

I CamelCase is used for combining words (instead of underscore or dot)
I Class and interface names start with an upper case letter (MyArray) and are nouns
I Methods names start with a lower case letter (get()) and are verb phrases
I Variables start with a lower-case letter and are as long as it needs to be for clarity

I Variable names like a are dispreferred
I Indentation should be used to make the structure of the program visible

I Substatements of a statement or declaration should be indented
I Indentation should be four spaces wide

I Avoid lines longer than 80 characters
I Files longer than 2000 lines are cumbersome and should be avoided.
I …

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 15 / 19

Section 4

Closing Remarks

Closing Remarks

Learning Programming

I Learning to program is hard and takes time
I It helps to

I Regularly do it
I Talk about it
I Be stubborn
I Think formalistic
I Be fearless and disrespectful
I Read documentation
I Try to understand your mistakes

I It’s ok to make mistakes

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 17 / 19

Closing Remarks

On Programming in Real Life

I It’s extremely rare to start from scratch
I Most of the time, we work with code that others have written

I 60% to 90% of the lifetime cost of software goes to maintenance Sources

I Software we start will likely be continued by others

� Writing “good code” is not needed technically, but because it makes maintenance easier

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?

Kernighan/Plauger (1978, 10)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18 / 19

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm

Closing Remarks

On Programming in Real Life

I It’s extremely rare to start from scratch
I Most of the time, we work with code that others have written

I 60% to 90% of the lifetime cost of software goes to maintenance Sources

I Software we start will likely be continued by others
� Writing “good code” is not needed technically, but because it makes maintenance easier

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?

Kernighan/Plauger (1978, 10)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18 / 19

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm

Closing Remarks

On Programming in Real Life

I It’s extremely rare to start from scratch
I Most of the time, we work with code that others have written

I 60% to 90% of the lifetime cost of software goes to maintenance Sources

I Software we start will likely be continued by others
� Writing “good code” is not needed technically, but because it makes maintenance easier

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you’re as clever as you can be when you write it, how will you ever debug it?

Kernighan/Plauger (1978, 10)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 18 / 19

https://web.archive.org/web/20120313070806/http://users.jyu.fi/~koskinen/smcosts.htm

Closing Remarks

Looking Ahead
What happens in the summer term
I Version control (= git)
I Recursion
I Data structures
I Unit testing
I Efficient programming
I Multithreading
I …

Programming Ideas for the Break
I A simple game such as Tic Tac Toe

I Turn-based games are simpler than real time games
I Birthday predictor (read in a list of birthdays, calculate the next round anniversaries)
I Make algorithmic art (e.g., ASCII art)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 19 / 19

Closing Remarks

Looking Ahead
What happens in the summer term
I Version control (= git)
I Recursion
I Data structures
I Unit testing
I Efficient programming
I Multithreading
I …

Programming Ideas for the Break
I A simple game such as Tic Tac Toe

I Turn-based games are simpler than real time games
I Birthday predictor (read in a list of birthdays, calculate the next round anniversaries)
I Make algorithmic art (e.g., ASCII art)

Reiter User Input, Java Standard Library, Code Style, Closing Remarks 19 / 19

	User Input
	Java Standard Library
	Code Style
	Closing Remarks

