

Machine Learning 1: Naive Bayes VL Sprachliche Informationsverarbeitung

Nils Reiter nils.reiter@uni-koeln.de

November 21, 2024 Winter term 2024/25

Hausaufgabe 2

- \blacktriangleright Reden von Politiker: innen herunterladen
- \blacktriangleright Type-Token-Ratio berechnen
- \blacktriangleright Was kam raus?

Hausaufgabe 2

- ▶ Reden von Politiker: innen herunterladen
- \blacktriangleright Type-Token-Ratio berechnen
- \blacktriangleright Was kam raus?

Meine Kommentare zu den Ergebnissen

- \triangleright Absolute Pfade in Programmcode \odot
- \triangleright Setzen Sie keine Screenshots von Programmcode in Ihre Dokumente \odot
- ► Je länger der Text, desto geringer die TTR deswegen besser STTR verwenden
- **IFTR** kann eine interessante Unterschiede zeigen, aber meistens in Kombination mit anderen Indikatoren
- \blacktriangleright Lexikalische Varianz interagiert mit den Inhalten

SHK-Stelle am Bundesinstitut für Berufsbildung (BIBB)

Informationsextraktion aus Stellenanzeigen

- Mehrere Millionen Stellenanzeigen sollen mit Informationen zu Beruf, Tätigkeitsprofil und Kompetenzen angereichert werden
- ▶ Modellentwicklung mithilfe von LLMs auf hauseigener Serverinfrastruktur
- \blacktriangleright ab Frühjahr 2025
- \blacktriangleright Umfang: 19 Stunden/Woche
- Gehaltseinstufung: TVÖD-Bund E6
- Befristung: 2 Jahre
- I weitere Informationen: **kai.krueger@bibb.de** Tel.: **+49 (0) 228 – 107 1580**

Introduction

- \blacktriangleright Probabilistic classification algorithm
- \blacktriangleright Makes independence assumption about features 'naive'
-

I Reading Jurafsky/Martin [\(2023,](#page-68-0) Ch. 4)

Introduction

- \blacktriangleright Probabilistic classification algorithm
- \blacktriangleright Makes independence assumption about features 'naive'

I Reading Jurafsky/Martin [\(2023,](#page-68-0) Ch. 4)

 \triangleright Nice intro to Bayesian statistics by Matt Parker and Hannah Fry Parker/Fry [\(2019\)](#page-68-1) $\frac{\text{Yc} \cdot \text{Yc} \cdot \text$

Section 1

[Probabilities](#page-6-0)

Basics: Cards

- \triangleright 32 cards Ω (sample space)
- **►** 4 'colors': $C = \{\clubsuit, \spadesuit, \diamondsuit, \heartsuit\}$
- \triangleright 8 values: $V = \{7, 8, 9, 10, J, Q, K, A\}$
- Individual cards ('outcomes') are denoted with value and color: $8\heartsuit$

Events

- \triangleright Generally, we draw cards from a (well shuffled) deck
- \triangleright We define what events we are interested in
- An event can be any subset of the sample space Ω
	- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

Events

- \triangleright Generally, we draw cards from a (well shuffled) deck
- \triangleright We define what events we are interested in
- An event can be any subset of the sample space Ω
	- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

• "We draw a heart eight"
$$
- E = \{8\heartsuit\}
$$

Events

- \triangleright Generally, we draw cards from a (well shuffled) deck
- \triangleright We define what events we are interested in
- An event can be any subset of the sample space Ω
	- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- \triangleright "We draw a heart eight" $E = \{8\heartsuit\}$
- \blacktriangleright "We draw card with a diamond"

Events

- \triangleright Generally, we draw cards from a (well shuffled) deck
- \triangleright We define what events we are interested in
- An event can be any subset of the sample space Ω
	- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- \triangleright "We draw a heart eight" $E = \{8\heartsuit\}$
- \blacktriangleright "We draw card with a diamond" $E = \{7 \diamondsuit, 8 \diamondsuit, 9 \diamondsuit, 10 \diamondsuit, J \diamondsuit, Q \diamondsuit, K \diamondsuit, A \diamondsuit\}$

Events

- \triangleright Generally, we draw cards from a (well shuffled) deck
- \triangleright We define what events we are interested in
- An event can be any subset of the sample space Ω
	- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- \triangleright "We draw a heart eight" $E = \{8\heartsuit\}$
- \blacktriangleright "We draw card with a diamond" $E = \{7 \diamondsuit, 8 \diamondsuit, 9 \diamondsuit, 10 \diamondsuit, J \diamondsuit, Q \diamondsuit, K \diamondsuit, A \diamondsuit\}$
- \triangleright "We draw a queen"

Events

- \triangleright Generally, we draw cards from a (well shuffled) deck
- \triangleright We define what events we are interested in
- An event can be any subset of the sample space Ω
	- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- \triangleright "We draw a heart eight" $E = \{8\heartsuit\}$
- \blacktriangleright "We draw card with a diamond" $E = \{7 \diamondsuit, 8 \diamondsuit, 9 \diamondsuit, 10 \diamondsuit, J \diamondsuit, Q \diamondsuit, K \diamondsuit, A \diamondsuit\}$

$$
\blacktriangleright \text{ "We draw a queen" } - E = \{Q\clubsuit, Q\spadesuit, Q\diamondsuit, Q\heartsuit\}
$$

Events

- \triangleright Generally, we draw cards from a (well shuffled) deck
- \triangleright We define what events we are interested in
- An event can be any subset of the sample space Ω
	- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- \triangleright "We draw a heart eight" $E = \{8\heartsuit\}$
- \blacktriangleright "We draw card with a diamond" $E = \{7 \diamondsuit, 8 \diamondsuit, 9 \diamondsuit, 10 \diamondsuit, J \diamondsuit, Q \diamondsuit, K \diamondsuit, A \diamondsuit\}$
- \triangleright "We draw a queen" $E = \{Q\clubsuit, Q\spadesuit, Q\diamondsuit, Q\heartsuit\}$
- \triangleright "We draw a heart eight or diamond ten"

Events

- \triangleright Generally, we draw cards from a (well shuffled) deck
- \triangleright We define what events we are interested in
- An event can be any subset of the sample space Ω
	- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- \triangleright "We draw a heart eight" $E = \{8\heartsuit\}$
- \blacktriangleright "We draw card with a diamond" $E = \{7 \diamondsuit, 8 \diamondsuit, 9 \diamondsuit, 10 \diamondsuit, J \diamondsuit, Q \diamondsuit, K \diamondsuit, A \diamondsuit\}$
- \triangleright "We draw a queen" $E = \{Q\clubsuit, Q\spadesuit, Q\diamondsuit, Q\heartsuit\}$
- \triangleright "We draw a heart eight or diamond ten" $E = \{8\%, 10\%\}$
- \blacktriangleright "We draw any card"

Events

- \triangleright Generally, we draw cards from a (well shuffled) deck
- \triangleright We define what events we are interested in
- An event can be any subset of the sample space Ω
	- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- \triangleright "We draw a heart eight" $E = \{8\heartsuit\}$
- \blacktriangleright "We draw card with a diamond" $E = \{7 \diamondsuit, 8 \diamondsuit, 9 \diamondsuit, 10 \diamondsuit, J \diamondsuit, Q \diamondsuit, K \diamondsuit, A \diamondsuit\}$
- \triangleright "We draw a queen" $E = \{Q\clubsuit, Q\spadesuit, Q\diamondsuit, Q\heartsuit\}$
- \triangleright "We draw a heart eight or diamond ten" $E = \{8\%, 10\%\}$
- \triangleright "We draw any card" $E = \Omega$

Probabilities

 \blacktriangleright Probability *p*(*E*): Likelihood, that a certain event (*E* ⊂ Ω) happens

- \blacktriangleright 0 < *p* < 1
- $p(E) = 0$: Impossible event $p(E) = 1$: Certain event
- \blacktriangleright $p(E) = 0.000001$: Very unlikely event

Basics

Probabilities

 \blacktriangleright Probability *p*(*E*): Likelihood, that a certain event (*E* ⊂ Ω) happens

- \triangleright 0 $\lt p \lt 1$
- $p(E) = 0$: Impossible event $p(E) = 1$: Certain event
- \blacktriangleright $p(E) = 0.000001$: Very unlikely event

- \blacktriangleright If all outcomes are equally likely: $p(E) = \frac{|E|}{|\Omega|}$
- \blacktriangleright $p({8\heartsuit}) = \frac{1}{32}$ \blacktriangleright $p(\{9\clubsuit, 9\spadesuit, 9\diamondsuit, 9\heartsuit\}) = \frac{4}{32}$
- \blacktriangleright $p(\Omega) = 1$ (must happen, certain event)

Probability and Relative Frequency

- \blacktriangleright Probability p : Theoretical concept, idealisation
	- \blacktriangleright Expectation
- ▶ Relative Frequency *f* : Concrete measure
	- \triangleright Normalised number of *observed* events
	- ► E.g., after 10 times drawing a card (with returning and shuffling), we counted the event ♦ eight times: $f(\lbrace x \spadesuit \rbrace) = \frac{8}{10}$
- \triangleright For large numbers of drawings, relative frequency approximates the probability

$$
\text{lim}_{\infty} f = p
$$

Probability and Relative Frequency

- \blacktriangleright Probability p : Theoretical concept, idealisation
	- \blacktriangleright Expectation
- ▶ Relative Frequency *f* : Concrete measure
	- \triangleright Normalised number of *observed* events
	- ► E.g., after 10 times drawing a card (with returning and shuffling), we counted the event ♦ eight times: $f(\lbrace x \spadesuit \rbrace) = \frac{8}{10}$
- \triangleright For large numbers of drawings, relative frequency approximates the probability

$$
\text{lim}_{\infty} f = p
$$

- \blacktriangleright In practice, we will often use relative frequencies as probabilities
- \blacktriangleright This establishes assumptions:
	- \triangleright Data set is representative of the real world
	- \triangleright We make a lot of observations (the more, the better we approximate real probabilities)

Joint Probability (Independent Events)

- \triangleright We are often interested in multiple events (and their relation)
- \triangleright *E*: We draw 8 \heartsuit two times in a row (putting the first card back)
	- \blacktriangleright *E*₁: First card is 8 \heartsuit
	- \blacktriangleright *E*₂: Second card is 8 \heartsuit
	- \blacktriangleright $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$

Joint Probability (Independent Events)

- \triangleright We are often interested in multiple events (and their relation)
- \triangleright *E*: We draw 8 \heartsuit two times in a row (putting the first card back)
	- \blacktriangleright *E*₁: First card is 8 \heartsuit
	- \blacktriangleright *E*₂: Second card is 8 \heartsuit
	- \blacktriangleright $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$
- \triangleright *E*: We draw \heartsuit two times in a row (putting the first card back)
	- \blacktriangleright *E*₁: First card is $X\heartsuit$
	- \blacktriangleright *E*₂: Second card is $X\heartsuit$

$$
p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{4} * \frac{1}{4} = 0.0625
$$

Joint Probability (Independent Events)

- \triangleright We are often interested in multiple events (and their relation)
- \triangleright *E*: We draw 8 \heartsuit two times in a row (putting the first card back)
	- \blacktriangleright *E*₁: First card is 8 \heartsuit
	- \blacktriangleright *E*₂: Second card is 8 \heartsuit
	- \blacktriangleright $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$
- \blacktriangleright *E*: We draw \heartsuit two times in a row (putting the first card back)
	- \blacktriangleright *E*₁: First card is $X\heartsuit$
	- ► E_2 : Second card is $X\heartsuit$
	- \blacktriangleright $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{4} * \frac{1}{4} = 0.0625$
- \blacktriangleright These events are independent
	- \blacktriangleright because we return and re-shuffle the cards all the time
	- **Drawing 8** \heartsuit **the first time has no influence on the second drawing**

Basics I

Conditional Probability (Dependent Events)

- \blacktriangleright We no longer return the card
- \blacktriangleright *E*: We draw 8 \heartsuit two times in a row
	- \blacktriangleright *E*₁: First card is 8 \heartsuit
	- \blacktriangleright E_2 : Second card is 8 \heartsuit (without putting the first card back)
	- \triangleright *p*(*E*₁, *E*₂) = *p*(*E*₁) ∗ *p*(*E*₂)
	- \blacktriangleright This no longer works, because the events are not independent
	- If There is only one $8\heartsuit$ in the game, and $p(E_2)$ has to take into account that it might be gone already
	- \blacktriangleright This is expressed with the notion of conditional probability
	- \triangleright *p*(*E*₁, *E*₂) = *p*(*E*₁) * *p*(*E*₂)*E*₁)
		- $p(E_2|E_1) = 0$, therefore $p(E_1, E_2) = 0$

Basics II Conditional Probability (Dependent Events)

▶ *E*: We draw \heartsuit first (E_1) , followed by:

- \blacktriangleright *E*₂: Second card is *X* \diamondsuit
- \blacktriangleright *E*₃: Second card is *X* \heartsuit

$$
p(E_1, E_2) = p(E_1) * p(E_2|E_1) = \frac{8}{32} * \frac{8}{31} = 0.064
$$

\n
$$
p(E_1, E_3) = p(E_1) * p(E_3|E_1) = \frac{8}{32} * \frac{7}{31} = 0.056
$$

Example

Relation between **hair color** *H* and preferred **wake-up time** *W* (all numbers are made up.)

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

Example

Relation between **hair color** *H* and preferred **wake-up time** *W* (all numbers are made up.)

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

If we pick a random person, what's the probability that this person has brown hair?

$$
p(H = \text{brown}) = ?
$$

Example

Relation between hair color H **and preferred wake-up time** W (all numbers are made up.)

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

$$
p(H = \text{brown}) = \frac{50}{65}
$$

$$
p(W = \text{early}) = \frac{30}{65}
$$

$$
p(W = \text{late}) = \frac{35}{65}
$$
 sums per row or column

Conditional and Joint Probabilities

Example

Relation between **hair color** *H* and preferred **wake-up time** *W* (all numbers are made up.)

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

► Joint probability:
$$
p(W = \text{late}, H = \text{brown}) = \frac{30}{65}
$$

First probability: $p(w = \text{acc}, H = \text{bown}) = \frac{65}{65}$

Probability that someone has brown hair *and* prefers to wake up late

Denominator: Number of all items

Conditional and Joint Probabilities

Example

Relation between **hair color** *H* and preferred **wake-up time** *W* (all numbers are made up.)

 \downarrow *W* / *H* \rightarrow brown red sum early 20 10 30 late 30 5 35 sum 50 15 65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

I Joint probability: $p(W = \text{late}, H = \text{brown}) = \frac{30}{65}$

 \blacktriangleright Probability that someone has brown hair and prefers to wake up late

- Denominator: Number of all items
- ▶ Conditional probability: $p(W = \text{late}|H = \text{brown}) = \frac{30}{50}$
	- \triangleright Probability that one of the brown-haired participants prefers to wake up late
	- Denominator: Number of remaining items (after conditioned event has happened)

Example

Example

$$
p(A|B) = \frac{p(A,B)}{p(B)}
$$
 definition of conditional probabilities

Example

$$
p(A|B) = \frac{p(A,B)}{p(B)}
$$
 definition of conditional probabilities

$$
p(W = \text{late}|H = \text{brown}) = \frac{30}{50} = 0.6
$$
 intuition from previous slide

Example

$$
p(A|B) = \frac{p(A,B)}{p(B)}
$$
 definition of conditional probabilities

$$
p(W = \text{late}|H = \text{brown}) = \frac{30}{50} = 0.6
$$
 intuition from previous slide

$$
= \frac{p(W = \text{late}, H = \text{brown})}{p(H = \text{brown})}
$$
by applying definition

Example

$$
p(A|B) = \frac{p(A, B)}{p(B)}
$$
 definition of conditional probabilities
\n
$$
p(W = \text{late}|H = \text{brown}) = \frac{30}{50} = 0.6
$$
 intuition from previous slide
\n
$$
= \frac{p(W = \text{late}, H = \text{brown})}{p(H = \text{brown})}
$$
by applying definition
\n
$$
= \frac{0.46}{\sqrt{1.5}} = 0.6
$$

\n
$$
= 0.6
$$
Write the information were achieved by subtract term 2024/25

Multiple Conditions

- \triangleright Joint probabilities can include more than two events $p(E_1, E_2, E_3, \ldots)$
- \triangleright Conditional probabilities can be conditioned on more than two events

$$
p(A|B, C, D) = \frac{p(A, B, C, D)}{p(B, C, D)}
$$

Multiple Conditions

- \triangleright Joint probabilities can include more than two events $p(E_1, E_2, E_3, \ldots)$
- \triangleright Conditional probabilities can be conditioned on more than two events

$$
p(A|B, C, D) = \frac{p(A, B, C, D)}{p(B, C, D)}
$$

 \blacktriangleright Chain rule

$$
p(A, B, C, D) = p(A|B, C, D)p(B, C, D)
$$

= $p(A|B, C, D)p(B|C, D)p(C, D)$
= $p(A|B, C, D)p(B|C, D)p(C|D)p(D)$

Bayes Law

$$
p(B|A) = \frac{p(A, B)}{p(A)} = \frac{p(A|B)p(B)}{p(A)}
$$

Allows reordering of conditional probabilities

 \blacktriangleright Follows directly from above definitions

Section 2

[Naive Bayes](#page-39-0)

Prediction Model

- \blacktriangleright Probabilistic model (i.e., takes probabilities into account)
- \triangleright Probabilities are estimated on training data (relative frequencies)

Prediction Model

- \blacktriangleright Probabilistic model (i.e., takes probabilities into account)
- \triangleright Probabilities are estimated on training data (relative frequencies)

 \blacktriangleright Setup

- \blacktriangleright A set of features f_i
- ▶ A data set $x \in X$ (*x* is an individual instance, *X* the entire set)
- \blacktriangleright The feature *value* is given as $f_i(x)$

Prediction Model

- \blacktriangleright Probabilistic model (i.e., takes probabilities into account)
- \triangleright Probabilities are estimated on training data (relative frequencies)
- \blacktriangleright Setup
	- \blacktriangleright A set of features f_i
	- ▶ A data set $x \in X$ (x is an individual instance, X the entire set)
	- \blacktriangleright The feature *value* is given as $f_i(x)$

- ▶ Feature representing "word length" f_6
- \triangleright One data point is "dog"
- \blacktriangleright *f*₆("*dog*") = 3

Prediction Model

- \blacktriangleright Probabilistic model (i.e., takes probabilities into account)
- \triangleright Probabilities are estimated on training data (relative frequencies)
- \blacktriangleright Setup
	- \blacktriangleright A set of features f_i
	- ▶ A data set $x \in X$ (x is an individual instance, X the entire set)
	- \blacktriangleright The feature *value* is given as $f_i(x)$

- ▶ Feature representing "word length" f_6
- \triangleright One data point is "dog"
- \blacktriangleright *f*₆("*dog*") = 3

```
You can also think of f_6as a function in a program:
    1 def f(6(x)):
    2 return len(x)
```
Prediction Model

Intuition

We calculate the probability for each possible class c , given the feature values of the item x , and we assign most probably class

Prediction Model

Intuition

We calculate the probability for each possible class *c*, given the feature values of the item *x*, and we assign most probably class

- \blacktriangleright $f_n(x)$: Value of feature *n* for instance *x*
- \blacktriangleright arg $\max_i e$: Select the argument *i* that maximizes the expression *e*

- \blacktriangleright $f_n(x)$: Value of feature *n* for instance *x*
- \blacktriangleright arg $\max_i e$: Select the argument *i* that maximizes the expression *e*

- \blacktriangleright $f_n(x)$: Value of feature *n* for instance *x*
- \blacktriangleright arg $\max_i e$: Select the argument *i* that maximizes the expression *e*

$$
prediction(x) = \underset{c \in C}{\arg \max} p(c|f_1(x), f_2(x), \dots, f_n(x))
$$

- \blacktriangleright $f_n(x)$: Value of feature *n* for instance *x*
- \blacktriangleright arg $\max_i e$: Select the argument *i* that maximizes the expression *e*

$$
prediction(x) = \underset{c \in C}{\arg \max} p(c|f_1(x), f_2(x), \dots, f_n(x))
$$

How do we calculate $p(c|f_1(x), f_2(x), \ldots, f_n(x))$?

Naive Bayes Prediction Model

$$
p(c|f_1,\ldots,f_n) =
$$

Naive Bayes Prediction Model

$$
p(c|f_1,...,f_n) = \frac{p(c, f_1, f_2,...,f_n)}{p(f_1, f_2,...,f_n)}
$$

Naive Bayes Prediction Model

$$
p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}
$$

Naive Bayes Prediction Model

$$
p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}
$$

denominator is constant, so we skip it ∝ *p*(*f*1|*f*2, . . . , *fn*, *c*) × *p*(*f*2|*f*3, . . . , *fn*, *c*) × · · · × *p*(*c*)

Naive Bayes Prediction Model

$$
p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}
$$

denominator is constant, so we skip it ∝ *p*(*f*1|*f*2, . . . , *fn*, *c*) × *p*(*f*2|*f*3, . . . , *fn*, *c*) × · · · × *p*(*c*)

Now we – naively – assume feature independence

$$
= p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)
$$

Naive Bayes Prediction Model

$$
p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}
$$

denominator is constant, so we skip it ∝ *p*(*f*1|*f*2, . . . , *fn*, *c*) × *p*(*f*2|*f*3, . . . , *fn*, *c*) × · · · × *p*(*c*)

Now we – naively – assume feature independence

$$
= p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)
$$

$$
prediction(x) = \underset{c \in C}{\arg \max} p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)
$$

Naive Bayes Prediction Model

$$
p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}
$$

denominator is constant, so we skip it ∝ *p*(*f*1|*f*2, . . . , *fn*, *c*) × *p*(*f*2|*f*3, . . . , *fn*, *c*) × · · · × *p*(*c*)

Now we – naively – assume feature independence

$$
= p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)
$$

$$
\text{prediction}(x) = \underset{c \in C}{\arg \max} \ p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)
$$
\nWhere do we get

\n
$$
p(f_i(x)|c)? - \text{Training!}
$$

Learning Algorithm

- 1. For each feature *fⁱ*
	- \triangleright Count frequency tables from the training set:

- 2. Calculate conditional probabilities
	- \triangleright Divide each number by the sum of the entire column

E.g.,
$$
p(a|c_1) = \frac{3}{3+5+0}
$$
 $p(b|c_2) = \frac{7}{2+7+1}$

Section 3

[Example: Spam Classification](#page-57-0)

Training

- \triangleright Data set: 100 e-mails, manually classified as spam or not spam (50/50) \blacktriangleright Classes $C = \{true, false\}$
- \blacktriangleright Features: Presence of each of these tokens (manually selected): 'casino', 'enlargement', 'meeting', 'profit', 'super', 'text', 'xxx'

Table: Extracted frequencies for features 'casino' and 'text'

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

3. Assign the class with the higher probability

Subsection 1

[Problems with Zeros](#page-63-0)

Danger

 \triangleright What happens in this situation to the prediction?

Danger

- \triangleright What happens in this situation to the prediction?
- At some point, we need to multiply with $p(\text{love} = 1 | \text{true}) = 0$
- In This leads to a total probability of zero (for this class), irrespective of the other features
	- \blacktriangleright Even if another feature would be a perfect predictor!
- \rightarrow Smoothing (as before)!

Smoothing

- \triangleright Whenever multiplication is involved, zeros are dangerous
- \triangleright Smoothing is used to avoid zeros
- \blacktriangleright Different possibilities
- \triangleright Simple: Add something to the probabilities
	- $\frac{x_i+1}{N+1}$
	- \blacktriangleright This leads to values slightly above zero

Summary

- \blacktriangleright Probability theory
	- \blacktriangleright Probability: Fraction of positive over all possible events
	- \triangleright Conditional probability: Restrict the space of possible events
- \blacktriangleright Naive Bayes
	- \blacktriangleright Probability-based classification algorithm
	- \blacktriangleright Assumes feature independence (therefore: "naive")
	- \triangleright Still used in many applications
		- \blacktriangleright E.g., spam classification

References I

Jurafsky, Dan/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of Janaury 7, 2023. Prentice Hall. URL: <https://web.stanford.edu/~jurafsky/slp3/>. Parker, Matt/Hannah Fry (2019). Bayesian Statistics with Hannah Fry. URL: <https://www.youtube.com/watch?v=7GgLSnQ48os>.