
DEEP LEARNING – SESSION 2
WiSe 2024/2025

Janis Pagel

Institut für Digital Humanities 2024-10-17

01

SOLUTION EXERCISE 1

Discussion Exercise 1 I

Was everyone able to push to GitHub?
Exercise was for server on http://compute.spinfo.uni-koeln.de

You can also do the exercises on your personal laptop
You need to repeat adding your name and email adress to the git config and create a new SSH key and
add it to GitHub

Institut für Digital Humanities 2024-10-17 3

http://compute.spinfo.uni-koeln.de

Discussion Exercise 1 II

Replace “pagelj” with your own username

$ git clone git@github.com:IDH-Cologne-Deep-Learning -2024/Exercise -1.git
$ cd Exercise-1
$ git branch pagelj
$ git switch pagelj
$ touch shakespeare-sonnet-1.txt

[Add sonnet text]
$ git add shakespeare-sonnet-1.txt
$ git commit -m "Add sonnet"

[Add author information]
$ git add shakespeare-sonnet-1.txt
$ git commit -m "Add author information"
$ git log > log.txt
$ git add log.txt
$ git commit -m "Add logfile"
$ git push origin pagelj

Institut für Digital Humanities 2024-10-17 4

02

GIT

Merging

You can merge changes in one branch into another branch
If the changes do not concern the same lines in a file, you can auto merge

test.txt on branch1

1 First line
2 Second line
3 Third line

test.txt on main

1 First line
2 Second line

$ git switch main
$ git merge branch1
Updating e411f63..3772873
Fast-forward
test.txt | 1 +
1 file changed, 1 insertion(+)

$ git log
commit 37728739cdb35e235b9e862c5320f4f4e22849ca (HEAD -> main, branch1)
Author: Janis Pagel <janis.pagel@uni-koeln.de>
Date: Wed Oct 16 20:55:03 2024 +0200

Add code

Institut für Digital Humanities 2024-10-17 6

Merge conflict I

If you want to merge changes that concern the same line, you get a merge conflict
You can manually edit the conflicting files and keep only the changes you want to keep
or you can use a merge tool via “git mergetool”

Uses default merge tool on system

Institut für Digital Humanities 2024-10-17 7

Merge conflict II
test.txt on branch1

1 First line
2 Second line in branch1

test.txt on branch2

1 First line
2 Second line in branch2

test.txt on main

1 First line
2 Second line

$ git switch main
$ git merge branch1
Updating d5412a2..59f1347
Fast-forward
test.txt | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)

$ git merge branch2
Auto-merging test.txt
CONFLICT (content): Merge conflict in test.txt
Automatic merge failed; fix conflicts and then commit the result.

Institut für Digital Humanities 2024-10-17 8

Merge conflict III
test.txt on main after merge conflict

1 First line
2 <<<<<<< HEAD
3 Second line in branch1
4 ||||||| d5412a2
5 Second line
6 =======
7 Second line in branch2
8 >>>>>>> branch2

“HEAD” refers to the branch we were on when issuing the commit (in this case “main”)
<<<<<<<, |||||||, ======= and >>>>>>> are added to show were the different versions begin and end
Replace everything between <<<<<<< and >>>>>>> with the version you want to keep (can also be
something completely new)

Institut für Digital Humanities 2024-10-17 9

Merge conflict IV
test.txt on main after merge conflict resolution

1 First line
2 New version of second line

$ git add test.txt
$ git commit
[main 899010f] Merge branch 'branch2'
$ git log
commit 899010f7b88946dac4873c2bdf368d0ec12f074d (HEAD -> main)
Merge: 59f1347 7865e8d
Author: Janis Pagel <janis.pagel@uni-koeln.de>
Date: Wed Oct 16 20:38:00 2024 +0200

Merge branch 'branch2'

git automatically adds a commit message for the merge commit

Institut für Digital Humanities 2024-10-17 10

Merge conflict V

After merging, you can delete the merged branches
You can also keep them for further changes if you wish

$ git branch -d branch1
Deleted branch branch1 (was 59f1347).
$ git branch -d branch2
Deleted branch branch2 (was 7865e8d).

Institut für Digital Humanities 2024-10-17 11

Further topics in git

gitignore (Chacon and Straub 2014, p. 32)
rebase (Chacon and Straub 2014, p. 95)
tags (Chacon and Straub 2014, p. 55)
submodules (Chacon and Straub 2014, p. 298)
hooks (Chacon and Straub 2014, p. 354)

Institut für Digital Humanities 2024-10-17 12

03

PYTHON

Motivation

Not a full-fledged Python course
Assuming existing knowledge of Java or other programming language
Python is very popular in data science and deep learning
Many supporting libraries
Some goals of Python: being nice to read, writing concise code
https://peps.python.org/pep-0008/

Institut für Digital Humanities 2024-10-17 14

https://peps.python.org/pep-0008/

First Python Script

Run Python script in terminal
helloworld.py

1 print("Hello World!")

$ python helloworld.py
Hello World!

Python is a script language, so the compilation and run processes are not separated, but done in one step
by the Python interpretor
Python does not need any class declaration to run (but you can use classes in Python if you wish)

Institut für Digital Humanities 2024-10-17 15

Basic Math

Addition
print(1 + 1)

> 2

Multiplication
print(2 * 2)

> 4

Division
print(10 / 3)

> 3.3333333333333335

Integer Division
print(10 // 3)

> 3

Power
print(2 ** 3)

> 8

Institut für Digital Humanities 2024-10-17 16

Python Data Types I

Boolean

x = True
y = False
print(x)
print(y)

> True
> False

Institut für Digital Humanities 2024-10-17 17

Python Data Types II

String

x = "banana"
print(x)
y = 'banana'
print(y)
print(x[0])
print(x[0:3]) # Slicing
print(x[0:1])
print(x[2:]) # Not giving the beginning/end of a slice goes until the end of the string
print(x[-2]) # Negative indices count from the end
z = "one"
print(z + " " + y) # Strings can be concatenated
print(f"{z} yellow {y}") # The f-string can also be used for concatenation. You need to write an 'f'

before the quotation marks

> banana
> banana
> b
> ban
> b
> nana
> n
> one banana
> one yellow banana

You can imaging the indices in Python being between characters for the purpose of slicing: 0b1a2n3a4n5a6

Institut für Digital Humanities 2024-10-17 18

Python Data Types III

List

empty_list = []
print(empty_list)
x = [1, 2, 3, 4]
y = ["banana", "apple", "coconut"]
print(x)
print(y)
print(y[0])
print(y[1:3])
empty_list.append("mango") # Items can be added to list via append method
print(empty_list)
print(y + empty_list) # Lists can be concatenated
y[0] = "orange" # List items can be changed
print(y)

> []
> [1, 2, 3, 4]
> ['banana', 'apple', 'coconut']
> banana
> ['apple', 'coconut']
> ['mango']
> ['banana', 'apple', 'coconut', 'mango']
> ['orange', 'apple', 'coconut']

Institut für Digital Humanities 2024-10-17 19

Python Data Types IV

Dictionary (like HashMap in Java)

empty_dict = {}
print(empty_dict)
d = {"banana": "yellow", "apple": "red", "coconut": "brown"}
print(d)
print(d["coconut"])
d["cherry"] = "red"
print(d)
d["apple"] = "green"
print(d)
d2 = {"banana": ["yellow", "brown"], "apple": ["red", "green"]}
print(d2["banana"])
d3 = {"banana": {"color": "yellow", "sweet": True}, "coconut": {"color": "brown", "sweet": False}}
print(d3["coconut"]["sweet"])

> {}
> {'banana': 'yellow', 'apple': 'red', 'coconut': 'brown'}
> brown
> {'banana': 'yellow', 'apple': 'red', 'coconut': 'brown', 'cherry': 'red'}
> {'banana': 'yellow', 'apple': 'green', 'coconut': 'brown', 'cherry': 'red'}
> ['yellow', 'brown']
> False

Institut für Digital Humanities 2024-10-17 20

If Statements I

x = ["banana", "apple", "coconut"]
if x[0][-1] == "a":

print(f"The final letter of '{x[0]}' is 'a'")
else:

print(f"The final letter of '{x[0]}' is not 'a'")

> The final letter of 'banana' is 'a'

x = ["banana", "apple", "coconut"]
if x[2][-1] == "a":

print(f"The final letter of '{x[2]}' is 'a'")
elif x[2][0] == "c":

print(f"The first letter of '{x[2]}' is 'c'")
else:

print(f"The final letter of '{x[2]}' is not 'a' and the first letter is not 'c'")

> The first letter of 'coconut' is 'c'

Python does not use curly brackets {} to group if statements and loops, but indentations
Conventionally, one indentation should be a single tab or four spaces (spaces are preferred)
The condition of the if statement is terminated via a colon :

Institut für Digital Humanities 2024-10-17 21

If Statements II

x = ["banana", "apple", "coconut"]
if x[1][-1] == "a":

print(f"The final letter of '{x[1]}' is 'a'")
elif x[1][0] == "c":

print(f"The first letter of '{x[1]}' is 'c'")
else:

print(f"The final letter of '{x[1]}' is not 'a' and the first letter is not 'c'")

> The final letter of 'apple' is not 'a' and the first letter is not 'c'

The evaluation of a condition is a Boolean value

print(x[0][-1] == "a")
print(x[0][0] == "a")

> True
> False

Institut für Digital Humanities 2024-10-17 22

If Statements III

The in operator checks if the value exists in a string or list

print("banana" in x)
print("b" in "banana")
print("y" in "banana")

> True
> True
> False

Institut für Digital Humanities 2024-10-17 23

Python Loops I

For Loop

for i in [1,2,3,4]:
print(i)

for i in range(1,5):
print(i)

enumerate() creates a generator to iterate over list items plus an index
for i, fruit in enumerate(["banana", "apple", "coconut"]):

print(i, fruit)
zip() creates a generator to iterate over two lists in parallel
for item1, item2 in zip(["banana", "apple", "coconut"], ["yellow", "red", "brown"]):

print(item1, item2)

> 1
> 2
> 3
> 4

> 1
> 2
> 3
> 4

> 0 banana
> 1 apple
> 2 coconut

Institut für Digital Humanities 2024-10-17 24

Python Loops II

> banana yellow
> apple red
> coconut brown

Institut für Digital Humanities 2024-10-17 25

Python Loops III

While Loop

i = 1
while i <= 4:

print(i)
i+=1

> 1
> 2
> 3
> 4

You can create infinite while loops by adding a statement that is always true
The while loop ends as soon as the condition is not true anymore

condition = True
i = 1
while condition:

print(i)
i = i + 1
if i == 5:

condition = False

> 1
> 2
> 3
> 4

Institut für Digital Humanities 2024-10-17 26

Functions

def split_words(text):
The split() method operates on strings and outputs a list with items coming from the operation when the

string is split at the separator given to the
function

return text.split(" ")
print(split_words("I want to split this text into a list containing its words"))
def split_lines(text):

return text.split("\n")
Three quotation marks around strings allows for multi -line strings
print(split_lines("""This text contains multiple lines.
I want to split it into a list containing one line per item."""))
def count_word_length(words):

for word in words:
print(len(word))

count_word_length(split_words("Count the word length of this text"))

> ['I', 'want', 'to', 'split', 'this', 'text', 'into', 'a', 'list', 'containing', 'its', 'words']
> ['This text contains multiple lines.', 'I want to split it into a list containing one line per item.']

> 5
> 3
> 4
> 6
> 2
> 4
> 4

Input and output of functions are not typed in Python, you need to keep track of the type of a variable
If a function does not have a return value, it does not need to be declared as void

Institut für Digital Humanities 2024-10-17 27

Reading User Input

You can wait for user input and write the input into a variable
When the user hits “Enter”, Python stops waiting for input and reads in the string so far

userinput.py

1 user_input = input()
2
3 print(f"User input: {user_input}")

$ python userinput.py
Janis Pagel<Return>
User input: Janis Pagel

Institut für Digital Humanities 2024-10-17 28

Reading and Writing Files I

data.txt

1 William Shakespeare
2 As You Like It
3
4 ACT 1
5 Scene 1
6
7 Enter Orlando and Adam.
8 ORLANDO
9 As I remember, Adam, it was upon this

10 fashion bequeathed me by will but poor a thousand
11 crowns, and, as thou sayst, charged my brother on

with ... as ...: opens the file in a
separated environment, so you don’t
need to take care of closing the file
file_object.read() returns the file
content as a string

with open("data.txt", "r") as file_object:
file_read = file_object.read()

print(file_read)
print(file_read.split("\n"))

> William Shakespeare
> As You Like It
>
> ACT 1
> Scene 1
>
> Enter Orlando and Adam.
> ORLANDO
> As I remember, Adam, it was upon this
> fashion bequeathed me by will but poor a

thousand
> crowns, and, as thou sayst, charged my

brother on

> ['William Shakespeare', 'As You Like It',
'', 'ACT 1', 'Scene 1'
, '', 'Enter Orlando
and Adam.', 'ORLANDO',
'As I remember, Adam,
it was upon this', '

fashion bequeathed me
by will but poor a
thousand', 'crowns,
and, as thou sayst,
charged my brother on'
]

Institut für Digital Humanities 2024-10-17 29

Reading and Writing Files II

data.txt

1 William Shakespeare
2 As You Like It
3
4 ACT 1
5 Scene 1
6
7 Enter Orlando and Adam.
8 ORLANDO
9 As I remember, Adam, it was upon this

10 fashion bequeathed me by will but poor a thousand
11 crowns, and, as thou sayst, charged my brother on

readlines() directly splits the file con-
tent by newline and returns a list, but
preserves the newlines

with open("data.txt", "r") as file_object:
file_read = file_object.readlines()

print(file_read)

> ['William Shakespeare\n', 'As You Like It\
n', '\n', 'ACT 1\n', '
Scene 1\n', '\n', '
Enter Orlando and Adam
.\n', 'ORLANDO\n', 'As
I remember, Adam, it

was upon this\n', '
fashion bequeathed me
by will but poor a
thousand\n', 'crowns,
and, as thou sayst,
charged my brother on'
]

Institut für Digital Humanities 2024-10-17 30

Reading and Writing Files III

data.txt

1 William Shakespeare
2 As You Like It
3
4 ACT 1
5 Scene 1
6
7 Enter Orlando and Adam.
8 ORLANDO
9 As I remember, Adam, it was upon this

10 fashion bequeathed me by will but poor a thousand
11 crowns, and, as thou sayst, charged my brother on

open(..., "w") writes to a file, creates
it if it doesn’t exists yet and overwrites it
if it does exist (without asking for confir-
mation!!!)
"sep".join() takes a list as argument
and returns a string with "sep" as the
separator

with open("data.txt", "r") as file_object:
file_read = file_object.read()

file_split = file_read.split("\n")
file_sorted = sorted(file_split)
with open("sorted.txt", "w") as file_object:

file_object.write("\n".join(
file_sorted))

sorted.txt

1
2
3 ACT 1
4 As I remember, Adam, it was upon this
5 As You Like It
6 Enter Orlando and Adam.
7 ORLANDO
8 Scene 1
9 William Shakespeare

10 crowns, and, as thou sayst, charged my brother on
11 fashion bequeathed me by will but poor a thousand

Institut für Digital Humanities 2024-10-17 31

04

EXERCISE 2

Exercise 2

Exercise 2 can be found on https://github.com/IDH-Cologne-Deep-Learning-2024/Exercise-2
Deadline: October 24, 2024, 08:00:00 CEST

Institut für Digital Humanities 2024-10-17 33

https://github.com/IDH-Cologne-Deep-Learning-2024/Exercise-2

F
o
to

:
G

re
g

o
r

H
ü
b

l

Janis Pagel
Institut für Digital Humanities

eMail janis.pagel@uni-koeln.de
Website https://janispagel.de
Phone +49 221 470 5749

mailto:janis.pagel@uni-koeln.de
https://janispagel.de

References

Chacon, Scott and Ben Straub (2014). Pro Git. 2nd ed. Apress. isbn: 978-1484200773. url:
https://git-scm.com/book/en/v2.

Institut für Digital Humanities 2024-10-17 35

https://git-scm.com/book/en/v2

	Solution Exercise 1
	git
	Python
	Exercise 2
	Appendix
	References

