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SOLUTION EXERCISE 10



Discussion Exercise 10

Solution at https:
//github.com/IDH-Cologne-Deep-Learning-2024/Exercise-10/blob/main/lstm_solution.py
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Recap

So far, we have only looked at neural networks (mostly) as classifiers
Classes to classify as output, embeddings as input

But: Current state-of-the-art deep learning uses language modelling
For classification
For text generation
For everything else
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LANGUAGE MODELLING



Language Modelling

Model that outputs probabilities about the likelihood that a word follows a given sequence of words
Example (probabilities made up):

“The capital of Germany is”
“Berlin” (70%)
“Bonn” (15%)
…
“Paris” (1%)
“nice” (0.5%)
…
“is” (0.00000001%)
“of” (0.000000001%)
…

All probabilities for the vocabulary words need to add up to 100%
Probabilities are learned on large collections of texts
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Formalization of Language Models

Every sequence of words receives probability:

P (w1:n) =
n∏

i=1

P (wi|w1:i−1) = P (w1)P (w2|w1)P (w3|w1:2) . . . P (wn|w1:n−1)

This means LMs can be used as both
Analyzers

Calculate the probability of a given sequence (i.e. “How likely is it that this sequence will occur”)
Generators

What is the probability of all possibly next words, pick the most likely (or from a collection of the
most likely)

In practice it is often too costly (time and resource-wise) to calculate the probability based on all sequences
ever occurring before

Assumption that the next word only depends on the previous k words

P (wn+1|w1:n) ≈ P (wn+1|wn−k:n)

This is not necessary for neural network-based language models like RNNs/LSTMs
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Perplexity

Perplexity is a measure that can be used to see how good a LM predicts the sequences in a given corpus
If perplexity is low, the LM predicts the given corpus well (assigns high probabilities to the sequences in
the corpus)
If the perplexity is high, the LM does not predict the given corpus well (assigns low probabilities to the
sequences in the corpus)

Perplexity can be calculated as

perplexity(w1:n) = n

√√√√ n∏
i=1

1
P (wi|w1:i−1)

Perplexity is corpus-dependent
A LM that works well on one corpus might not work well for another corpus
Perplexity of different LMs can only be compared on the same corpus
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RNNs/LSTMs as language models

In deep learning, RNNs/LSTMs can easily be used as language models
The input is a sequence of word embeddings
The output is a probability distribution over all possibly occurring next words (softmax)

Figure: Source: https://pantelis.github.io/cs634/docs/common/lectures/nlp/rnn-language-models/
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RNNs/LSTMs as language models

The model simply predicts the next word at every time step
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Encoder-Decoder

Usually, the generation with a LM is unconditional
The LM will just produce text based on the probability distribution it learned, without an end or goal

When the generation should be conditional (for example translation, chat bot, summarization, etc.), an
encoder-decoder setup can be used

The encoder encodes the input into a latent representation
The decoder decodes the latent representation into the desired output

Figure: Source: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Attention

In the encoder-decoder setup, the encoder outputs a single vector that gets interpreted by the decoder
This vector contains all information about the input sequence in a compressed form
The decoder needs to interpret the input based on this compressed representation alone

Better: Let the model learn what part of the encoder input is most relevant for the decoder
Similar to the LSTM mechanism

This is called attention
Simply another representation (vectors) learned together with the encoder and decoder

Figure: Source: https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html
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Attention

It was shown early on that attention helps to connect related tokens in the mapping sequences

Figure: Source: Bahdanau, Cho, and Bengio (2014, p. 6)
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LANGUAGE MODELS IN KERAS



Language Model in Keras

A language model in Keras is like a usual model with X being a sequence and y being the next word

model = Sequential()
model.add(Embedding(vocab_size, 300, input_length=maxlen))
model.add(LSTM(64))
model.add(Dense(vocab_size, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam')
model.fit(X, y)
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Encoder-Decoder in Keras

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Input, Embedding, LSTM, RepeatVector
model = Sequential()
model.add(Input(shape=(INPUT_LENGTH ,)))
model.add(Embedding(input_dim = number_of_symbols, output_dim =64,))
model.add(LSTM(64, return_sequences = False)) # Encoder
model.add(RepeatVector(OUTPUT_LENGTH))
model.add(LSTM(64, return_sequences=True, dropout=0.2)) # Decoder
model.add(Dense(number_of_symbols*2, activation='softmax')
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EXERCISE 11



Exercise 11

Exercise 11 can be found on https://github.com/IDH-Cologne-Deep-Learning-2024/Exercise-11
Deadline: January 09, 2025, 08:00:00 CET
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