

DECISION TREES

Sprachverarbeitung (Vorlesung)

Janis Pagel*

Recap

- Evaluation of machine learning models
- Accuracy, error rate
 - Single score for entire classification
- Precision, Recall, F-Score
 - Scores for each class
 - Precision: How many of the items classified as c are truly category c?
 - Recall: How many of the items that are truly c did the system find?
- Baseline

01

DECISION TREES

• What are the instances?

- What are the instances?
 - Situations we are in (this is not really automatisable)

- What are the instances?
 - Situations we are in (this is not really automatisable)
- What are the features?

- What are the instances?
 - Situations we are in (this is not really automatisable)
- What are the features?
 - Consciousness
 - Clothing situation
 - Promises made
 - Whether we are driving
 - .

• Well-established data structure in CS

- Well-established data structure in CS
- A tree is a pair that contains
 - some value and
 - a (possibly empty) set of children
 - Children are also trees

- Well-established data structure in CS
- A tree is a pair that contains
 - some value and
 - a (possibly empty) set of children
 - Children are also trees
- Formally: $\langle v, \{\langle w, \emptyset \rangle, \langle u, \{\langle s, \emptyset \rangle \} \rangle \} \rangle$

- Well-established data structure in CS
- A tree is a pair that contains
 - some value and
 - a (possibly empty) set of children
 - Children are also trees
- Formally: $\langle v, \{\langle w, \emptyset \rangle, \langle u, \{\langle s, \emptyset \rangle\} \rangle \} \rangle$
- Recursive definition: "A tree is something and a bunch of sub trees"
 - · Recursion is an important ingredient in many algorithms and data structures

- Well-established data structure in CS
- A tree is a pair that contains
 - some value and
 - a (possibly empty) set of children
 - Children are also trees
- Formally: $\langle v, \{\langle w, \emptyset \rangle, \langle u, \{\langle s, \emptyset \rangle\} \rangle \} \rangle$
- · Recursive definition: "A tree is something and a bunch of sub trees"
 - · Recursion is an important ingredient in many algorithms and data structures
- If the tree has labels on the edges, the pair becomes a triple

•
$$\langle v, \emptyset, \{\langle w, l_w, \emptyset \rangle, \langle u, l_u, \{\langle s, l_s, \emptyset \rangle\} \rangle \} \rangle$$

- 1 Decision Trees
 - Prediction
 - Training
 - Example: Spam Classification

2 Summary

• How can we make predictions with the tree?

- How can we make predictions with the tree?
- Each non-leaf node in the tree represents one feature
- Each branch at this node represents one possible feature value
 - Number of branches $= |v(f_i)|$ (number of possible values)

- How can we make predictions with the tree?
- Each non-leaf node in the tree represents one feature
- Each branch at this node represents one possible feature value
 - Number of branches $= |v(f_i)|$ (number of possible values)
- Each leaf node represents a class label

- How can we make predictions with the tree?
- Each non-leaf node in the tree represents one feature
- Each branch at this node represents one possible feature value
 - Number of branches = $|v(f_i)|$ (number of possible values)
- Each leaf node represents a class label
- Make a prediction for x:
 - 1. Start at root node
 - 2. If it's a leaf node
 - assign the class label
 - 3. Else
 - Check node which feature is to be tested (f_i)
 - Extract f_i(x)
 - Follow corresponding branch
 - Go to 2

- 1 Decision Trees
 - Prediction
 - Training
 - Example: Spam Classification

2 Summary

• How to get the tree?

- How to get the tree?
- Core idea: The tree represents splits of the training data

- How to get the tree?
- Core idea: The tree represents splits of the training data
 - 1. Start with the full data set D_{train} as D
 - 2. If D only contains members of a single class:
 - Done.
 - 3. Else:
 - Select a feature f_i
 - Extract feature values of all instances in D
 - Split the data set according to f_i : $D = D_a \cup D_b \cup D_c \dots D_{\alpha} = \{x \in D | f_i(x) = \alpha\}, \quad a, b, c \in v(f_i)$
 - Go back to 2

- How to get the tree?
- Core idea: The tree represents splits of the training data
 - 1. Start with the full data set D_{train} as D
 - 2. If D only contains members of a single class:
 - Done.
 - 3. Else:
 - Select a feature f_i
 - Extract feature values of all instances in D
 - Split the data set according to f_i : $D = D_a \cup D_b \cup D_c \dots D_{\alpha} = \{x \in D | f_i(x) = \alpha\}, \quad a, b, c \in v(f_i)$
 - Go back to 2
- Remaining question: How to select features?

- What is a good feature?
 - One that maximizes homogeneity in the split data set

- What is a good feature?
 - One that maximizes homogeneity in the split data set
- "Homogeneity"
 - Increase

$$\{\spadesuit \spadesuit \spadesuit \heartsuit\} => \{\heartsuit\} \cup \{\spadesuit \spadesuit \}$$

No increase

$$\{ \spadesuit \spadesuit \spadesuit \heartsuit \} => \{ \spadesuit \} \cup \{ \spadesuit \spadesuit \heartsuit \}$$

- What is a good feature?
 - One that maximizes homogeneity in the split data set
- "Homogeneity"
 - Increase

```
\{ \spadesuit \spadesuit \spadesuit \heartsuit \} => \{ \heartsuit \} \cup \{ \spadesuit \spadesuit \} \leftarrow \text{better split!}
```

No increase

$$\{ \spadesuit \spadesuit \spadesuit \heartsuit \} => \{ \spadesuit \} \cup \{ \spadesuit \spadesuit \heartsuit \}$$

• Homogeneity: Entropy/information (Shannon 1948)

- What is a good feature?
 - One that maximizes homogeneity in the split data set
- "Homogeneity"
 - Increase

```
\{ \spadesuit \spadesuit \spadesuit \heartsuit \} = > \{ \heartsuit \} \cup \{ \spadesuit \spadesuit \} \leftarrow \text{better split!}
```

No increase

$$\{\spadesuit \spadesuit \spadesuit \heartsuit\} => \{\spadesuit\} \cup \{\spadesuit \spadesuit \heartsuit\}$$

- Homogeneity: Entropy/information (Shannon 1948)
- Rule: Always select the feature with the highest information gain (IG)
 - (= the highest reduction in entropy = the highest increase in homogeneity)

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaaa

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaa only one symbol, very certain

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaa only one symbol, very certain
 - abbaabbaaba

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaa only one symbol, very certain
 - abbaabbabbaaba two symbols, evenly distributed, 50:50

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaa only one symbol, very certain
 - abbaabbabbaaba two symbols, evenly distributed, 50:50
 - aaaaabbaaaaaba

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaa only one symbol, very certain
 - abbaabbabbaaba two symbols, evenly distributed, 50:50
 - aaaaabbaaaaaba two symbols, unevenly distributed, 75:25

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaa only one symbol, very certain
 - abbaabbaaba two symbols, evenly distributed, 50:50
 - aaaaabbaaaaaba two symbols, unevenly distributed, 75:25
 - cbabcababcbaca

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaa only one symbol, very certain
 - abbaabbaaba two symbols, evenly distributed, 50:50
 - aaaaabbaaaaaba two symbols, unevenly distributed, 75:25
 - cbabcababcbaca three symbols, evenly distributed, 33:66

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaa only one symbol, very certain
 - abbaabbaaba two symbols, evenly distributed, 50:50
 - aaaaabbaaaaaba two symbols, unevenly distributed, 75:25
 - cbabcababcbaca three symbols, evenly distributed, 33:66
 - nmkfjigeahldcb

Intuition

- Measures the amount of uncertainty
- How uncertain is the next symbol in these sequences?
 - aaaaaaaaaaaa only one symbol, very certain
 - abbaabbabbaaba two symbols, evenly distributed, 50:50
 - aaaaabbaaaaaba two symbols, unevenly distributed, 75:25
 - cbabcababcbaca three symbols, evenly distributed, 33:66
 - nmkfjigeahldcb 14 symbols, very uncertain
- Certainty depends on number of different symbols and on their distribution

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$$

15 May 2025

15 May 2025

15 May 2025

Interpretation

Entropy is the average number of bits* we need to specify an outcome of the random variable (* for b=2)

15 May 2025

Examples

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

$$H(\{ \spadesuit \spadesuit \spadesuit \}) = -\frac{4}{4} \log_2 \frac{4}{4} = 0$$

$$H(\{ \spadesuit \spadesuit \spadesuit \heartsuit \}) = -\left(\underbrace{\frac{3}{4} \log_2 \frac{3}{4} + \underbrace{\frac{1}{4} \log_2 \frac{1}{4}}_{\heartsuit}}_{\diamondsuit}\right) = 0.811$$

$$H(\{ \spadesuit \spadesuit \heartsuit \heartsuit \}) = \dots = 1 = H(\{ \spadesuit \spadesuit \spadesuit \heartsuit \heartsuit \heartsuit \}) = \dots$$

Examples

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)$$

$$H(\{\spadesuit \spadesuit \spadesuit \}) = -\frac{4}{4} \log_2 \frac{4}{4} = 0$$

$$H(\{\spadesuit \spadesuit \spadesuit \heartsuit\}) = -\left(\frac{3}{4} \log_2 \frac{3}{4} + \frac{1}{4} \log_2 \frac{1}{4}\right) = 0.811$$

$$H(\{\spadesuit \spadesuit \heartsuit \heartsuit\}) = \dots = 1 = H(\{\spadesuit \spadesuit \spadesuit \heartsuit \heartsuit \heartsuit\}) = \dots$$

$$H(\{\spadesuit \spadesuit \heartsuit \heartsuit \clubsuit \clubsuit\}) = 1.585$$

$$H(\{\spadesuit \heartsuit \clubsuit \diamondsuit\}) = 2$$

$$H(\{nmkfjigeahldcb\}) = 3.807$$

15 May 2025

Mutual Information

- Entropy: Amount of uncertainty in a random variable
 - Joint entropy: Amount of uncertainty in two random variables
 - Conditional entropy: Amount of uncertainty, when another random variable is known

Mutual Information

- Entropy: Amount of uncertainty in a random variable
 - Joint entropy: Amount of uncertainty in two random variables
 - Conditional entropy: Amount of uncertainty, when another random variable is known
- Mutual Information (Information Gain)
 - · Reduction of entropy in one random variable by knowing about the other
 - $MI(X, Y) = H(X) H(X|Y) = H(Y) H(Y|X) = \sum_{x,y} p(x, y) \log_2 \frac{p(x, y)}{p(x)p(y)}$

Mutual Information

- Entropy: Amount of uncertainty in a random variable
 - Joint entropy: Amount of uncertainty in two random variables
 - Conditional entropy: Amount of uncertainty, when another random variable is known
- Mutual Information (Information Gain)
 - Reduction of entropy in one random variable by knowing about the other

•
$$MI(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = \sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)p(y)}$$

- Point-wise Mutual Information
 - Statement about values of random variable (i.e., occurrence of specific word)
 - $PMI(w_1, w_2) = \log_2 \frac{p(w_1, w_2)}{p(w_1)p(w_2)}$

MS99, p. 67

Feature Selection

Feature Selection

Feature Selection

Feature Selection using Entropy

- We calculate entropy for the target class
- But in different sub sets of the data set

Feature Selection using Entropy

- We calculate entropy for the target class
- But in different sub sets of the data set

Code Listing 2: Feature selection in pseudo code for a data set D

```
function select feature (D):
 base entropy = entropy(D)
 ig map = \{\}
 foreach feature for
    weighted feature entropy = 0
    foreach feature value v:
      D v = \text{subset of } D \text{ with all instances that have the value } v
      \overline{\text{sub}} entropy = entropy(D v)
      sub size = length(D v)
      weighted feature entropy = weighted feature entropy + ( sub entropy * sub size )
    information gain = base entropy - ((weighted feature entropy) / length(D))
    ig map.put(f, information gain)
 return maximum from ig map
```


ID3

J. Ross Quinlan (Mar. 1986). "Induction of Decision Trees". In: Machine Learning 1.1, pp. 81–106. DOI: 10.1007/BF00116251

Limitations

- Only categorical attributes
- Cannot handle missing values
- Tends to overfit: "In my experience, almost all decision trees can benefit from simplification" (Quinlan 1993, p. 36)
 - Even today, overfitting is a huge challenge for ML algorithms!

⇒ Extension: C4.5 (Quinlan 1993)

- 1 Decision Trees
 - Prediction
 - Training
 - Example: Spam Classification

2 Summary

Data set

- Data set: 100 e-mails, manually classified as spam or not spam (50/50)
 - Classes $C = \{\text{true}/1, \text{false}/0\}$
- Features: Presence of each of these tokens (manually selected): 'casino', 'enlargement', 'meeting', 'profit', 'super', 'text', 'xxx'

Mail	'casino'	'enlargement'	'meeting'	'profit'	'super'	'text'	'xxx'	С
1	1	1	0	0	1	1	1	0
2	0	1	0	1	0	0	0	1
3	1	0	1	0	1	0	0	0
4	1	1	1	0	0	0	0	0
5	0	1	1	0	0	1	1	1

First step: Use the full data set

H(full data set) = 1

First step: Use the full data set

```
H(\text{full data set}) = 1

H(\text{`casino'} = 1) = 0.9991

H(\text{`casino'} = 0) = 0.9985
```


First step: Use the full data set

```
\begin{array}{lll} \textit{H}(\mathsf{full} \; \mathsf{data} \; \mathsf{set}) & = & 1 \\ \textit{H}(\mathsf{'casino'} = 1) & = & 0.9991 \\ \textit{H}(\mathsf{'casino'} = 0) & = & 0.9985 \\ & \textit{H}(\mathsf{'casino'}) & = & \frac{(56 \times 0.9991) + (44 \times 0.9985)}{100} = 0.9989 \\ & \textit{IG}(\mathsf{'casino'}) & = & 1 - 0.9989 = 0.0012 \\ & \textit{IG}(\mathsf{'profit'}) & = & 0.0073 \\ & \vdots & \vdots & \vdots \end{array}
```


First step: Use the full data set

```
\begin{array}{lll} \textit{H}(\mathsf{full} \; \mathsf{data} \; \mathsf{set}) & = & 1 \\ \textit{H}(\mathsf{'casino'} = 1) & = & 0.9991 \\ \textit{H}(\mathsf{'casino'} = 0) & = & 0.9985 \\ & \textit{H}(\mathsf{'casino'}) & = & \frac{(56 \times 0.9991) + (44 \times 0.9985)}{100} = 0.9989 \\ & \textit{IG}(\mathsf{'casino'}) & = & 1 - 0.9989 = 0.0012 \\ & \textit{IG}(\mathsf{'profit'}) & = & 0.0073 \\ & \vdots & \vdots & \vdots \end{array}
```


Next step: Use the data set $\it after$ application of the first selected feature 'profit' = 0

```
\begin{array}{rcl} H({\rm data\; set}) & = & 0.99403 \\ H(\mbox{`casino'} = 1) & = & 0.9910 \\ H(\mbox{`casino'} = 0) & = & 0.9963 \\ IG(\mbox{`casino'}) & = & 0.00029 \\ IG(\mbox{`text'}) & = & 0.01151 \end{array}
```


'profit'

Next step: Use the data set $\it after$ application of the first selected feature 'profit' = 0 'profit' = 1

'profit'

Next step: Use the data set $\it after$ application of the first selected feature 'profit' = 0 'profit' = 1

'profit'

'text' 'casino'

Next step: Use the data set $\it after$ application of the first selected feature 'profit' = 0 'profit' = 1

Next step: Use the data set after application of the first two layers of selected features

02

SUMMARY

Summary

- Decision Tree
 - Transparent prediction model: Easy to apply by humans
 - Easy to implement: Follow the path form root to leaf
 - Learning algorithm
 - Recursively split the training data set according to features
 - Use information gain to maximize the homogeneity in the sub sets

15 May 2025

References I

Manning, Christopher D. and Hinrich Schütze (1999). Foundations of Statistical Natural Language Processing. Cambridge, Massachusetts and London, England: MIT Press.

Quinlan, J. Ross (Mar. 1986). "Induction of Decision Trees". In: *Machine Learning* 1.1, pp. 81–106. DOI: 10.1007/BF00116251.

— (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.

