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Recap

Evaluation of machine learning models
Accuracy, error rate

Single score for entire classification
Precision, Recall, F-Score

Scores for each class
Precision: How many of the items classified as c are truly category c?
Recall: How many of the items that are truly c did the system find?

Baseline
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Prediction Model – Toy Example

What are the instances?

Situations we are in
(this is not really automatisable)

What are the features?

Consciousness
Clothing situation
Promises made
Whether we are driving
…
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Trees

Well-established data structure in CS

A tree is a pair that contains
some value and
a (possibly empty) set of children

Children are also trees
Formally: ⟨v, {⟨w, ∅⟩, ⟨u, {⟨s, ∅⟩}⟩}⟩
Recursive definition: “A tree is something and a bunch of sub trees”

Recursion is an important ingredient in many algorithms and data structures
If the tree has labels on the edges, the pair becomes a triple
⟨v, ∅, {⟨w, lw, ∅⟩, ⟨u, lu, {⟨s, ls, ∅⟩}⟩}⟩

v

w u

s
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1 Decision Trees
Prediction
Training
Example: Spam Classification

2 Summary



Prediction Model

How can we make predictions with the tree?

Each non-leaf node in the tree represents one feature

Each branch at this node represents one possible
feature value

Number of branches = |v(fi)| (number of possible
values)

Each leaf node represents a class label
Make a prediction for x:
1. Start at root node
2. If it’s a leaf node

assign the class label
3. Else

Check node which feature is to be tested (fi)
Extract fi(x)
Follow corresponding branch
Go to 2
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1 Decision Trees
Prediction
Training
Example: Spam Classification

2 Summary



Learning Algorithm

How to get the tree?

Core idea: The tree represents splits of the training data
1. Start with the full data set Dtrain as D
2. If D only contains members of a single class:

Done.
3. Else:

Select a feature fi
Extract feature values of all instances in D
Split the data set according to fi: D = Da ∪ Db ∪ Dc . . .
Dα = {x ∈ D|fi(x) = α}, a, b, c ∈ v(fi)
Go back to 2

Remaining question: How to select features?
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Feature Selection

What is a good feature?
One that maximizes homogeneity in the split data set

“Homogeneity”
Increase
{♠♠♠♡} => {♡} ∪ {♠♠♠}
No increase
{♠♠♠♡} => {♠} ∪ {♠♠♡}

Homogeneity: Entropy/information (Shannon 1948)
Rule: Always select the feature with the highest information gain (IG)

(= the highest reduction in entropy = the highest increase in homogeneity)
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Entropy
Intuition

Measures the amount of uncertainty
How uncertain is the next symbol in these sequences?

aaaaaaaaaaaaaa

– only one symbol, very certain
abbaabbabbaaba – two symbols, evenly distributed, 50:50
aaaaabbaaaaaba – two symbols, unevenly distributed, 75:25
cbabcababcbaca – three symbols, evenly distributed, 33:66
nmkfjigeahldcb – 14 symbols, very uncertain

Certainty depends on number of different symbols and on their distribution
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Entropy (Shannon 1948)

H(X) = −
n∑
i=1

p(xi) logb p(xi)

number of classes present in X
relative frequency of the class

logb(x) = y
exactly if
by = x:

25 = 32⇔ log2 32 = 5

Interpretation

Entropy is the average number of bits∗ we need to specify an outcome of the random variable
(∗ for b = 2)
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Entropy (Shannon 1948)
Examples

H(X) = −
n∑
i=1

p(xi) log2 p(xi)

H({♠♠♠♠}) = −
4

4
log2

4

4
= 0

H({♠♠♠♡}) = −

3

4
log2

3

4︸ ︷︷ ︸
♠

+
1

4
log2

1

4︸ ︷︷ ︸
♡

 = 0.811

H({♠♠♡♡}) = . . . = 1 = H({♠♠♠♡♡♡}) = . . .

H({♠♠♡♡♣♣}) = 1.585

H({♠♡♣♢}) = 2

H({nmkfjigeahldcb}) = 3.807
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Entropy
Mutual Information

Entropy: Amount of uncertainty in a random variable
Joint entropy: Amount of uncertainty in two random variables
Conditional entropy: Amount of uncertainty, when another random variable is known

Mutual Information (Information Gain)
Reduction of entropy in one random variable by knowing about the other
MI(X,Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) =

∑
x,y p(x, y) log2

p(x,y)
p(x)p(y)

Point-wise Mutual Information
Statement about values of random variable (i.e., occurrence of specific word)
PMI(w1,w2) = log2

p(w1,w2)
p(w1)p(w2)

MS99, p. 67
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Feature Selection

{♠♠♠♡}

{♡} {♠♠♠}

H({♠♠♠♡}) = H([3, 1]) = 0.562

H({♡}) = H([1]) = 0

H({♠♠♠}) = H([3]) = 0

{♠♠♠♡}

{♠} {♠♠♡}

H({♠♠♠♡}) = H([3, 1]) = 0.562

H({♠}) = H([1]) = 0

H({♠♠♡}) = H([2, 1]) = 0.637

IG(f1) = H({♠♠♠♡}) − �(
H({♡}),H({♠♠♠})

)
= 0.562 − 0 = 0.562

IG(f2) = H({♠♠♠♡}) − �(
H({♠}),H({♠♠♡})

)
= 0.562 − (

3

4
0.637 +

1

4
0)

= 0.562 − 0.477 = 0.085
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Feature Selection using Entropy

We calculate entropy for the target class
But in different sub sets of the data set

Code Listing 1: Feature selection in pseudo code for a data set D
function select_feature (D):
base_entropy = entropy(D)
ig_map = {}
foreach feature f :
weighted_feature_entropy = 0
foreach feature value v:
D_v = subset of D with all instances that have the value v
sub_entropy = entropy(D_v)
sub_size = length(D_v)
weighted_feature_entropy = weighted_feature_entropy + ( sub_entropy ∗ sub_size )

information_gain = base_entropy − ( (weighted_feature_entropy) / length(D) )
ig_map.put(f, information_gain)

return maximum from ig_map
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ID3

J. Ross Quinlan (Mar. 1986). “Induction of Decision Trees”. In: Machine Learning 1.1, pp. 81–106. DOI:
10.1007/BF00116251

Limitations

Only categorical attributes
Cannot handle missing values
Tends to overfit: “In my experience, almost all decision trees can benefit from simplification” (Quinlan 1993, p. 36)

Even today, overfitting is a huge challenge for ML algorithms!
⇒ Extension: C4.5 (Quinlan 1993)
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Data set

Data set: 100 e-mails, manually classified as spam or not spam (50/50)
Classes C = {true/1, false/0}

Features: Presence of each of these tokens (manually selected): ‘casino’, ‘enlargement’, ‘meeting’, ‘profit’, ‘super’,
‘text’, ‘xxx’

Mail ‘casino’ ‘enlargement’ ‘meeting’ ‘profit’ ‘super’ ‘text’ ‘xxx’ C

1 1 1 0 0 1 1 1 0
2 0 1 0 1 0 0 0 1
3 1 0 1 0 1 0 0 0
4 1 1 1 0 0 0 0 0
5 0 1 1 0 0 1 1 1
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.
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Learning Algorithm

First step: Use the full data set

H(full data set) = 1

H(‘casino’ = 1) = 0.9991

H(‘casino’ = 0) = 0.9985

H(‘casino’) =
(56× 0.9991) + (44× 0.9985)

100
= 0.9989

IG(‘casino’) = 1− 0.9989 = 0.0012

IG(‘profit’) = 0.0073

...
...

‘profit’

0 1
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Learning Algorithm

Next step: Use the data set after application of the first selected feature
‘profit’ = 0

H(data set) = 0.99403

H(‘casino’ = 1) = 0.9910

H(‘casino’ = 0) = 0.9963

IG(‘casino’) = 0.00029

IG(‘text’) = 0.01151

‘profit’ = 1

H(data set) = 0.99107

H(‘casino’ = 1) = 0.9366

H(‘casino’ = 0) = 1

IG(‘casino’) = 0.0150

IG(‘meeting’) = 0.00029

‘profit’

0 1

‘text’ ‘casino’
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Learning Algorithm

Next step: Use the data set after application of the first two layers of selected features

‘profit’

‘text’ ‘casino’

0 1

‘enlargement’ ‘casino’

0 1

‘xxx’ ‘super’

0 1

...
...

...
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02

SUMMARY



Summary

Decision Tree
Transparent prediction model: Easy to apply by humans
Easy to implement: Follow the path form root to leaf
Learning algorithm

Recursively split the training data set according to features
Use information gain to maximize the homogeneity in the sub sets
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