

LOGISTIC REGRESSION

Sprachverarbeitung (Vorlesung)

Janis Pagel*

Recap

- So far
 - Two ML algorithms: Naive Bayes, decision tree
 - Feature-based ML: Features interpretable and based on "domain knowledge"
- Naive Bayes
 - Training
 - ullet Calculate $p(\mathsf{FEATURE}|\mathsf{CLASS})$ for all features, feature values and classes
 - Prediction
 - Calculate p(CLASS|FEATURES), assign class with highest probability
 - Assume feature independence

01

REGRESSION

 $\left. \begin{array}{c} \mathsf{Linear} \\ \mathsf{Logistic} \end{array} \right\} \mathsf{Regression}$

Regression and Neural Networks

- Neural Networks
 - Conceptually developed in the 20th century
 - Mainstream ML method in NLP since 2010
 - Building block of large language models (like ChatGPT)
 - But also a flexible ML algorithm by itself
 - Building block of neural networks: Logistic regression

Linear regression

• Prediction of numeric values (e.g., height and weight)

Linear regression

• Prediction of numeric values (e.g., height and weight)

Linear regression

- Prediction of numeric values (e.g., height and weight)
- "Linear" regression: Prediction of a linear relation between numeric values (i.e., a line)
- But: many relations are not linear

Linear regression

- Prediction of numeric values (e.g., height and weight)
- "Linear" regression: Prediction of a linear relation between numeric values (i.e., a line)
- But: many relations are not linear

Logistic Regression

- Classification algorithm: Instances are grouped into previously known classes
- Binary classification: Two classes (e.g., positive/negative)
- Extension of linear regression

Linear/logistic regression in parallel

Task Setup

- Input (x): A (collection of) numeric feature values
- Output (y): A numeric value

Example

Given the length of a narrative text in number of sentences, predict the number of characters present in its plot

The data set

y (# characters)	x
3	10
5	105
8	150
12	210
7	250
13	295

The data set

x	y (# characters)
10	3
105	5
150	8
210	12
250	7
295	13

Figure: Data set, each \times represents a text (x: text length, y: num. of characters)

The data set

x	y (# characters)
10	3
105	5
150	8
210	12
250	7
295	13

Figure: Data set, each \times represents a text (x: text length, y: num. of characters)

Prediction Model

- Linear regression with one variable (= univariate linear regression)
- Data: (*x*, *y*)
- Prediction (hypothesis function): $y = h_{a,b}(x) = ax + b$
- ullet How to set parameters a and b? o training algorithm

Prediction Model

- $h_{a,b}(x) = ax + b$ describes a set of functions
 - $h_{1,0}(x)$ is one concrete function with $h_{1,0}(x) = 1x + 0 = x$

Linear vs. Logistic Regression

- Linear regression: Prediction of numerical data
- Logistic regression: Prediction of (binary) categorical data

Linear vs. Logistic Regression

- Linear regression: Prediction of numerical data
- Logistic regression: Prediction of (binary) categorical data

Example

- Our interest
 - Literature quality
- Given the number of characters in a narrative text
- Will a book win the Nobel prize?
 - Two classes: Yes/No

Logistic Regression

The data set

How to predict these values?

How to predict these values?

Parameter Fitting

- Linear equations can be wrapped in a logistic one
- Same parameters to be tuned (a and b)
- $e = \sum_{n=0}^{\infty} \frac{1}{n!} = 2.71828$ (Euler's number)

$$y = \frac{1}{1 + e^{-(ax+b)}}$$
 (general form)

$$y=rac{1}{1+e^{-(ax+b)}}$$
 (general form)
$$y=rac{1}{1+e^{-(1*x+0)}}$$

$$y=rac{1}{1+e^{-(ax+b)}}$$
 (general form)
$$y=rac{1}{1+e^{-(1*x+0)}} \qquad y=rac{1}{1+e^{-}}$$

$$y=\frac{1}{1+e^{-(ax+b)}} \qquad \text{(general form)}$$

$$y=\frac{1}{1+e^{-(1*x+0)}} \qquad \qquad y=\frac{1}{1+e^{-(5*x-4)}}$$

$$y=\frac{1}{1+e^{-(5*x+4)}}$$

$$y = \frac{1}{1 + e^{-(ax + b)}}$$
 (general form)
$$y = \frac{1}{1 + e^{-(1 * x + 0)}}$$
 $y = \frac{1}{1 + e^{-(5 * x + 4)}}$ 1
$$y = \frac{1}{1 + e^{-(5 * x + 4)}}$$
 $y = \frac{1}{1 + e^{-(100 * x - 10)}}$

5 June 2025

2

0

$$y = rac{1}{1 + e^{-(ax + b)}}$$
 (general form)
$$y = rac{1}{1 + e^{-(1 * x + 0)}}$$
 $y = rac{1}{1 + e^{-(5 * x + 4)}}$ 1
$$y = rac{1}{1 + e^{-(5 * x + 4)}}$$
 $y = rac{1}{1 + e^{-(100 * x - 10)}}$

Summary: Logistic Regression (with a single variable)

Logistic regression is half of the math of deep learning

Summary: Logistic Regression (with a single variable)

Logistic regression is half of the math of deep learning

- Logistic Regression: Predicting binary values
- Model
 - Logistic equations

•
$$y = \frac{1}{1 + e^{-(ax+b)}}$$

• Learning algorithm: How to choose a and b?

- 1 Regression
 - Gradient Descent

2 Summary

Learning Regression Models

- How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?
- Learning algorithm Gradient Descent

Learning Regression Models

- How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?
- Learning algorithm Gradient Descent

Gradient descent is half of the algorithms of deep learning

Loss: Intuition

The *loss* measures the 'wrongness' of values for a and b.

Loss: Intuition

The *loss* measures the 'wrongness' of values for a and b.

- How big is the gap between a hypothesis and the data?
- Is (a, b) = (0.3, 0.5) or (a, b) = (0.4, 0.4) better?

Loss: Intuition

The *loss* measures the 'wrongness' of values for a and b.

- How big is the gap between a hypothesis and the data?
- Is (a, b) = (0.3, 0.5) or (a, b) = (0.4, 0.4) better?

Loss function: Intuition

- Loss should be as small as possible
- Total loss can be calculated for given parameters $\vec{w}=(a,b)$ (and a full data set)
 - \Rightarrow I.e.: Loss can be expressed as a function of $\vec{w}!$

- Loss should be as small as possible
- Total loss can be calculated for given parameters $\vec{w}=(a,b)$ (and a full data set) \Rightarrow I.e.: Loss can be expressed as a function of $\vec{w}!$
- Idea:
 - We change \vec{w} until we find the minimum of the function
 - We use the derivative to find out if we are in a minimum
 - ullet The derivative also tells us how to change the update parameters a and b

Figure: The loss function with two parameters

Function should be convex!

If not, we might get stuck in local minimum

Hypothesis vs. Loss Function

- ullet Hypothesis function h
 - Calculates outcomes, given feature values x
- Loss function J
 - Calculates 'wrongness' of h, given parameter values \vec{w} (and a data set)
 - In reality, \vec{w} represents many more parameters (thousands)

Figure: Visualizing gradient descent Source

Definition

Loss function depends on hypothesis function

Linear hypothesis function

- h(x) = ax + b
- Loss: Mean squared error

5 June 2025

Definition

Loss function depends on hypothesis function

Linear hypothesis function

- $\bullet \quad h(x) = ax + b$
- Loss: Mean squared error

Logistic hypothesis function

- $h(x) = \frac{1}{e^{-(b+ax)}}$
- Loss: (Binary) cross-entropy loss

5 June 2025

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

 $\vec{w} = (a, b)$: parameters $h_{\vec{w}}$: hypothesis function m: number of items

$$J(\vec{w}) =$$

Definition for Linear Regression

- \bullet The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

 $\vec{w} = (a, b)$: parameters $h_{\vec{w}}$: hypothesis function m: number of items

$$J(\vec{w}) = h_{\vec{w}}(x_i) - y_i$$

Calculate the loss for item i

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

 $\vec{w} = (a, b)$: parameters $h_{\vec{w}}$: hypothesis function m: number of items

$$J(\vec{w}) = \frac{(h_{\vec{w}}(x_i) - y_i)^2}{(h_{\vec{w}}(x_i) - y_i)^2}$$

- Calculate the loss for item *i*
- Square the error

Definition for Linear Regression

- \bullet The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

 $\vec{w} = (a, b)$: parameters $h_{\vec{w}}$: hypothesis function m: number of items

$$J(\vec{w}) = \sum_{i=1}^{m} (h_{\vec{w}}(x_i) - y_i)^2$$

- Calculate the loss for item i
- Square the error
- Sum them up

Definition for Linear Regression

- The loss function is a function on parameter values $\it a$ and $\it b$ (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

 $\vec{w} = (a, b)$: parameters $h_{\vec{w}}$: hypothesis function m: number of items

$$J(\vec{w}) = \frac{1}{m} \sum_{i=1}^{m} (h_{\vec{w}}(x_i) - y_i)^2$$

- Calculate the loss for item i
- Square the error
- Sum them up
- Divide by the number of items
 - Known as: Mean squared error

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

 $\vec{w}=(a,b)$: parameters $h_{\vec{w}}$: hypothesis function m: number of items

$$J(\vec{w}) = \frac{1}{2} \frac{1}{m} \sum_{i=1}^{m} (h_{\vec{w}}(x_i) - y_i)^2$$

- Calculate the loss for item i
- Square the error
- Sum them up
- Divide by the number of items
 - Known as: Mean squared error
- Divide by two
 - out of convenience, because derivation

Definition for Logistic Regression

• Two cases: $y_i = 0$ or $y_i = 1 - y_i$: real outcome for instance i

Definition for Logistic Regression

• Two cases: $y_i = 0$ or $y_i = 1 - y_i$: real outcome for instance i

$$J(\vec{w}) = h_{\vec{w}}(x_i) + (1 - h_{\vec{w}}(x_i))$$

Definition for Logistic Regression

• Two cases: $y_i = 0$ or $y_i = 1 - y_i$: real outcome for instance i

$$J(\vec{w}) = \log h_{\vec{w}}(x_i) + \log (1 - h_{\vec{w}}(x_i))$$

Definition for Logistic Regression

• Two cases: $y_i = 0$ or $y_i = 1 - y_i$: real outcome for instance i

$$J(\vec{w}) = y_i \log h_{\vec{w}}(x_i) + (1 - y_i) \log (1 - h_{\vec{w}}(x_i))$$

5 June 2025

Definition for Logistic Regression

• Two cases: $y_i = 0$ or $y_i = 1 - y_i$: real outcome for instance i

$$J(\vec{w}) = -\frac{1}{m} \sum_{i=0}^{m} y_i \log h_{\vec{w}}(x_i) + (1 - y_i) \log (1 - h_{\vec{w}}(x_i))$$

Definition for Logistic Regression

• Two cases: $y_i = 0$ or $y_i = 1 - y_i$: real outcome for instance i

$$J(\vec{w}) = -\frac{1}{m} \sum_{i=0}^{m} y_i \log h_{\vec{w}}(x_i) + (1 - y_i) \log (1 - h_{\vec{w}}(x_i))$$

y_i	$h_{\overrightarrow{w}}(x_i)$	$y_i \log h_{\vec{w}}(x_i) + (1 - y_i) \log(1 - h_{\vec{w}}(x_i))$
0	1	-23.2535
O	O	0
1	1	0
1	O	-23.2535
1	0.8	-0.3219281
1	0.2	-2.321928

Definition for Logistic Regression

• Two cases: $y_i = 0$ or $y_i = 1 - y_i$: real outcome for instance i

$$J(\vec{w}) = -\frac{1}{m} \sum_{i=0}^{m} \underbrace{y_i \log h_{\vec{w}}(x_i)}_{0 \text{ iff } y_i = 0} + \underbrace{(1 - y_i) \log (1 - h_{\vec{w}}(x_i))}_{0 \text{ iff } y_i = 1}$$

y_i	$h_{\overrightarrow{w}}(x_i)$	$y_i \log h_{\vec{w}}(x_i) + (1 - y_i) \log(1 - h_{\vec{w}}(x_i))$
0	1	-23.2535
0	O	0
1	1	0
1	O	-23.2535
1	0.8	-0.3219281
1	0.2	-2.321928

Definition for Logistic Regression

• Two cases: $y_i = 0$ or $y_i = 1 - y_i$: real outcome for instance i

$$J(\vec{w}) = -\frac{1}{m} \sum_{i=0}^{m} \underbrace{y_i \log h_{\vec{w}}(x_i)}_{0 \text{ iff } y_i = 0} + \underbrace{(1 - y_i) \log(1 - h_{\vec{w}}(x_i))}_{0 \text{ iff } y_i = 1}$$

y_i	$h_{\overrightarrow{w}}(x_i)$	$y_i \log h_{\vec{w}}(x_i) + (1 - y_i) \log(1 - h_{\vec{w}}(x_i))$
0	1	-23.2535
O	O	0
1	1	0
1	O	-23.2535
1	0.8	-0.3219281
1	0.2	-2.321928

 $\label{eq:Caveat: log 0} \mbox{Caveat: } \log 0 \mbox{ is undefined} \\ \mbox{We may need to add something very small}$

Side note: Log Probabilities

- Relative order is stable: If a > b, then $\log a > \log b$
 - No information loss

Side note: Log Probabilities

- Relative order is stable: If a > b, then $\log a > \log b$
 - No information loss
- Multiplication turns to addition: $\log(a \cdot b) = \log a + \log b$
 - Addition is much faster than multiplication in a computer
 - Pays off because we're doing this a lot

More Dimensions

- Above: 1 dimension, 2 parameters
 - *a*: slope, *b*: y-intercept
 - Input feature x, a single value

More Dimensions

- Above: 1 dimension, 2 parameters
 - *a*: slope, *b*: y-intercept
 - Input feature x, a single value
- More dimensions
 - $\vec{w} = \langle w_0, w_1, \dots, w_n \rangle$ (*n* dimensions)
 - Input vector \vec{x} with n-1 dimensions
 - Hypothesis function: $h_{\vec{w}}(x) = w_n x_n + w_{n-1} x_{n-1} + \dots w_1 x_1 + w_0$
 - w_0 : y-intercept, w_1 to w_n : slopes

5 June 2025

More Dimensions

- Above: 1 dimension, 2 parameters
 - *a*: slope, *b*: y-intercept
 - Input feature x, a single value
- More dimensions
 - $\vec{w} = \langle w_0, w_1, \dots, w_n \rangle$ (*n* dimensions)
 - Input vector \vec{x} with n-1 dimensions
 - Hypothesis function: $h_{\vec{w}}(x) = w_n x_n + w_{n-1} x_{n-1} + \dots w_1 x_1 + w_0$
 - w_0 : y-intercept, w_1 to w_n : slopes
- Algorithms
 - · Derivatives more complicated
 - Otherwise identical

5 June 2025

02

SUMMARY

Summary

Regression

Fitting parameters to a data distribution

• Linear Regression : Numeric prediction algorithm

• Prediction model: $h_{\vec{w}}(x) = ax + b$

• Logistic Regression: Classification algorithm

• Prediction model: $h_{\overrightarrow{w}}(x) = \frac{1}{e^{-(b+ax)}}$

• Training algorithm: Gradient descent

Gradient Descent

- Initialise \vec{w} with random values (e.g., 0)
- Repeat:
 - Find the direction to the minimum by taking the derivative
 - Change \vec{w} accordingly, using a learning rate η
 - Stop when \vec{w} don't change anymore

