Classifying Fake News
Das nicht triviale Problem, Fake News als solche zu erkennen
- Welche Anhaltspunkte gibt es?
- Was sind die Voraussetzungen für eine automatische Klassifikation?
- Daten
- Features
- Klassifizierer
- Evaluation
Brauchen wir im Projekt ODRA einen Fake News Classifier?
- Diskussion
Links:
Literatur:
Xinyi Zhou and Reza Zafarani. 2018. Fake News: A Survey of Research, Detection Methods, and Opportunities. ACM Comput. Surv. 1, 1 (2018)
Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu: "Fake News Detection on Social Media: A Data Mining Perspective" SIGKDD Explorations: Volume 19, Issue 1
Kai Shu, Suhang Wang, and Huan Liu. 2019. Beyond News Contents: The Role of Social Context for Fake News Detection. In The Twelfth ACM International Conference on Web Search and Data Mining (WSDM ’19), February
11–15, 2019, Melbourne, VIC, Australia. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3289600.3290994
Eugenio Tacchini, Gabriele Ballarin, Marco L. Della Vedova, Stefano Moret, Luca de Alfaro: "Some Like it Hoax: Automated Fake News Detection in Social Networks" Proceedings of the Second Workshop on Data Science for Social Good (SoGood), Skopje, Macedonia, 2017. CEUR Workshop Proceedings Volume 1960, 2017
Verónica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, Rada Mihalcea: "Automatic Detection of Fake News" arXiv preprint, arXiv:1708.07104
Yang Liu, Yi-Fang Brook Wu: Early Detection of Fake News on Social Media Through Propagation Path Classification with Recurrent and Convolutional Networks. In AAAI (2018)
Hadeer Ahmed, Issa Traore, Sherif Saad: "Detecting opinion spams and fake news using text classification,Security and Privacy," 2018;1:e9. https://doi.org/10.1001/spy2.9